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There is consensus that activation within distributed functional brain networks underlies human thought.
The impact of this consensus is limited, however, by a gap that exists between data-driven correlational
analyses that specify where functional brain activity is localized using functional magnetic resonance
imaging (fMRI), and neural process accounts that specify how neural activity unfolds through time to
give rise to behavior. Here, we show how an integrative cognitive neuroscience approach may bridge this
gap. In an exemplary study of visual working memory, we use multilevel Bayesian statistics to
demonstrate that a neural dynamic model simultaneously explains behavioral data and predicts localized
patterns of brain activity, outperforming standard analytic approaches to fMRI. The model explains
performance on both correct trials and incorrect trials where errors in change detection emerge from
neural fluctuations amplified by neural interaction. Critically, predictions of the model run counter to
cognitive theories of the origin of errors in change detection. Results reveal neural patterns predicted by
the model within regions of the dorsal attention network that have been the focus of much debate. The
model-based analysis suggests that key areas in the dorsal attention network such as the intraparietal
sulcus play a central role in change detection rather than working memory maintenance, counter to
previous interpretations of fMRI studies. More generally, the integrative cognitive neuroscience approach
used here establishes a framework for directly testing theories of cognitive and brain function using the
combined power of behavioral and fMRI data.

Keywords: visual working memory, change detection, fMRI, dynamic field theory

Supplemental materials: http://dx.doi.org/10.1037/rev0000264.supp

Although great strides have been made in understanding the
brain using data-driven methods (Smith et al., 2009), to understand
the brain’s complexity, psychological and brain sciences will need

sophisticated theories (Gerstner, Sprekeler, & Deco, 2012). But
what would a good theory of brain function look like? (This
question was posed in a July 11, 2014 New York Times Opinion
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Page by Gary Marcus: http://www.nytimes.com/2014/07/12/opinion/
the-trouble-with-brain-science.html.) Addressing this question re-
quires theories that bridge the disparate scientific languages of
neuroscience and psychology: we must create psychological ex-
planations for behavior using neural process accounts, and neuro-
scientific theories of brain function that make sense of behavior. In
short, bridge theories must explain what the brain is doing in
real-time to generate specific patterns of neural and behavioral
data (for related ideas see, O’Reilly, 2006).

Bridging brain and behavior may seem like a central goal in the
psychological and brain sciences; however, this goal has rarely
been directly realized. Many theories in psychology focus on
cognitive processes with a primary goal of explaining behavioral
data (Anderson et al., 2004; Bays, Catalao, & Husain, 2009; Brady
& Tenenbaum, 2013). Other theories focus on neural processes
with a primary goal of explaining neural data (Brunel & Wang,
2001; Deco, Rolls, & Horwitz, 2004; Domijan, 2011; Edin, Ma-
coveanu, Olesen, Tegnér, & Klingberg, 2007; Raffone & Wolters,
2001). Rarely is the same model used to generate both behavioral
and neural data, that is, simultaneously integrating both cognitive
and neural processes (Wijeakumar, Ambrose, Spencer, & Curtu,
2017). This level of explanation is arguably the most critical,
however, because it can explain how neural processes give rise to
cognition and behavior (see Palmeri, Love, Turner, 2017 for a
special issue devoted to this topic).

To illustrate, consider the current state of theory within the
domain of visual working memory (VWM). VWM is central
cognitive system used to remember visual information during
short-term delays and compare visual items that cannot be simul-
taneously foveated (for a review see Luck & Vogel, 2013). For
instance, VWM is often probed in the change detection task
(Cowan, 2001; Luck & Vogel, 1997; Pashler, 1988). In this task,
participants are shown a memory array consisting of one to eight
objects (e.g., colored squares). After a brief delay (e.g., 1 s),
participants are shown a test array and asked to determine whether
all the items are the same or different. Results from this task have
revealed that VWM has a highly limited capacity. Although esti-
mates vary across studies, it is generally accepted that people can
store only two to four items in VWM at one time (Cowan, 2001;
Luck & Vogel, 1997; Pashler, 1988; Rouder, Morey, Morey, &
Cowan, 2011).

According to one prominent view, these capacity limits reflect
the functioning of a memory system that stores a limited number
of fixed-resolution representations in independent memory “slots”
(Cowan, 2001; Luck & Vogel, 1997; Pashler, 1988; Zhang &
Luck, 2008). An alternative view holds that VWM is better con-
ceived of as a shared resource that can be flexibly distributed
among the items making up a scene, with no fixed upper limit on
the number of items that can be stored (Bays et al., 2009; Bays &
Husain, 2008; Wilken & Ma, 2004). There have been a host of
recent modeling efforts designed to contrast these two perspectives
using Bayesian approaches (e.g., Brady & Tenenbaum, 2013;
Donkin, Nosofsky, Gold, & Shiffrin, 2013; Kary, Taylor, &
Donkin, 2016; Rouder et al., 2008; Sims, Jacobs, & Knill, 2012)
and efforts to expand these views using drift diffusion models
(Sewell, Lilburn, & Smith, 2016). In all cases, these studies use
mathematical models to instantiate conceptual claims about VWM
and test these claims at the level of behavior, typically using
proportion correct, although some recent papers have also exam-

ined RTs (Donkin et al., 2013; Sewell et al., 2016), VWM confi-
dence (van den Berg, Yoo, & Ma, 2017), feature chunking (Brady
& Tenenbaum, 2013), and psychometric functions for difference
detection (Sims et al., 2012) or feature estimation with models that
do not have strict limits on slots or resources (Oberauer & Lin,
2017; Swan & Wyble, 2014). None of these models have been
used to explain patterns of neural data, nor were they designed to
do so.

Other theories of VWM have focused on the neural bases of this
cognitive system. Functional magnetic resonance imaging (fMRI)
research shows that a distributed network of frontal and posterior
cortical regions underlies change detection performance. VWM
representations are thought to be actively maintained in the intra-
parietal sulcus (IPS), the dorsolateral prefrontal cortex (DLPFC),
the ventral-occipital (VO) cortex for color stimuli, and the lateral-
occipital complex (LOC) for shape stimuli (Todd & Marois, 2004,
2005). In addition, there is suppression of the temporo-parietal
junction (TPJ) during the delay interval, and activation of the ACC
during the comparison phase (Mitchell & Cusack, 2008; Todd,
Fougnie, & Marois, 2005). Moreover, there is greater activation of
this network on change versus no change trials, and the hemody-
namic response on error trials tends to be less robust (Pessoa,
Gutierrez, Bandettini, & Ungerleider, 2002; Pessoa & Ungerleider,
2004).

Efforts to understand the theoretical bases of VWM at the neural
level have focused on the biophysical properties that give rise to
sustained activation—the putative neural basis of VWM represen-
tations (Constantinidis & Steinmetz, 1996; Fuster & Alexander,
1971; Miller, Erickson, & Desimone, 1996; Moody, Wise, di
Pellegrino, & Zipser, 1998). There have been quite detailed bio-
physical accounts of how networks of neurons give rise to sus-
tained activation. These models have been used to explain both
neurophysiological data (Brunel & Wang, 2001; Compte, Brunel,
Goldman-Rakic, & Wang, 2000) and, in some cases, aspects of
fMRI signals (Deco et al., 2004; Domijan, 2011; Edin et al., 2007).
Other models have explored the possibility that VWM represen-
tations are encoded in terms of neural synchrony across neuronal
assemblies (Raffone & Wolters, 2001), while recent work has also
raised the possibility that working memory performance reflects
the reactivation of representations from “memory-silent” neural
codes (Rose et al., 2016; Sprague, Ester, & Serences, 2016; cf.,
Schneegans & Bays, 2017). Although these models explain how
neural processes can encode and maintain visual information, they
have not been used to capture any behavioral data from VWM
paradigms. This is not surprising. Biophysical models are compu-
tationally complex; thus, simulating behavioral performance
across many iterations of the model is often not a realistic goal.

There are some models that have the potential to bridge the gap
between brain and behavior. These models use variants of neuronal
dynamics. For instance, Swan and Wyble (2014) proposed a model
of VWM with some neural dynamics; however, these dynamics
were discrete and activation levels were updated in one-shot steps
at encoding and retrieval making a direct link to real-time neural
measures not possible. Similarly, Oberauer and Lin (2017) pro-
posed a model inspired by a connectionist network using the
concept of neural activation; however, there was no attempt to
simulate real-time neural dynamics directly. In both of these arti-
cles, the focus was solely on simulating behavioral data.
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In summary, then, although understanding how the brain gives
rise to behavior is clearly an important goal, this goal has been
rarely addressed within the domain of visual working memory. We
contend that research on VWM is not unique in this regard.
Creating theories that bridge between these levels of analysis is
fundamentally challenging as highlighted in a recent special issue
on model-based fMRI (Turner, Forstmann, Love, Palmeri, & Van
Maanen, 2017). Model-based fMRI is a promising approach to
understanding human cognitive neuroscience that uses computa-
tional models of cognitive processes to link brain and behavior.
Turner and colleagues reviewed the current state of the literature,
highlighting many exciting approaches, but they also revealed a
fundamental challenge: very few approaches create a direct map-
ping between brain and behavior. This is what they call integrative
cognitive neuroscience (ICN). The goal of ICN is to develop a
model where one can tune parameters to achieve good fits to both
brain and behavior and, reversely, that brain and behavioral mea-
sures can feed back to inform the quality of the model or theory.

We pursue an ICN approach here within the domain of VWM.
We begin with a Dynamic Field Theory (DFT) of VWM that has
shown promise by generating novel, a priori behavioral predictions
that run counter to other cognitive models of visual working
memory (Johnson, Ambrose, van Lamsweerde, Dineva, & Spen-
cer, n.d.; Johnson, Spencer, Luck, & Schöner, 2009). Critically,
this theory also simulates neural population activation on a milli-
second timescale and explains how neural activation in the brain is
turned into a behavioral decision on each trial. This is not done
using an algorithmic mapping of activation to behavioral mea-
sures; rather, the model actively generates a decision on each trial
via the activation of a neural decision system engaged during the
comparison process. Thus, in DFT there is not brain at one level
and behavior at another. Rather, brain measures and behavioral
outcomes both arise from neural population dynamics. The result
is an ICN model that directly simulates both neural activation and
behavior.

The goal of the article is to test the DF model of VWM with
fMRI. We do this first by simulating previous fMRI findings from
the literature, simultaneously fitting the model to both behavioral
and fMRI data. This yields an initial set of model parameters we
can use to generate novel neural predictions. It also leads to a
discovery: what was thought to be a neural signature of working
memory—an asymptote at high memory loads—may actually be a
neural signature of brain regions coupled to working memory
rather than a signature of working memory per se. Our model also
explains why this asymptote does not occur in paradigms using a
longer memory delay.

Next, we test a set of novel neural predictions generated by the
DF model. One of the unique features of the model is that it
specifies the neural processes that underlie both correct and incor-
rect trials in the change detection task (Johnson, Simmering, &
Buss, 2014). Consequently, an optimal way to test the model is in
a change detection task that has high numbers of correct and
incorrect trials. Thus, we created a novel experiment that opti-
mized participants’ performance so they generated many errors,
but maintained performance at above-chance levels. We then used
this paradigm in a task-based fMRI study conducted using a 3T
MRI scanner.

But how do we know if the DF model provides a good account
of these data? Ideally, we would test the model against a compet-

ing theory of VWM; however, as our review above indicates, no
other theory of VWM simultaneously predicts both neural and
behavioral data. Thus, we tested the model against a standard
statistical model. The idea here was simple: typically, fMRI data
are analyzed using a general linear modeling (GLM) approach
with regressors for each factor in the experiment. For the DF
model to be useful, it should—at the very least—capture more
variance than the standard statistical model. To evaluate this, we
used Bayesian linear multivariate modeling to evaluate the DF
model’s ability to capture data from 23 regions of interest (ROIs)
relative to different variants of a task-based GLM. A Variational
Bayes algorithm (Roberts & Penny, 2002) was then used to esti-
mate the model evidence that takes into account model fit but also
penalizes models for their complexity (Bishop, 2006). Finding the
best model over a group of subjects was then implemented using
Random Effects Bayesian Model Selection (Rigoux, Stephan, Fris-
ton, & Daunizeau, 2014; Stephan, Penny, Daunizeau, Moran, &
Friston, 2009). Results show that the DF model outperforms the
standard statistical model. Further, the mapping of model compo-
nents to ROIs provides a novel functional picture of how the brain
implements VWM across a distributed network. Critically, this
analysis reveals not only where VWM lives in the brain, but which
brain areas implement which functions.

The article is organized as follows. We first describe the theory
we test, including background on the larger theoretical framework
this theory is embedded within, Dynamic Field Theory. Next, we
derive a mapping from neural activity in the model to hemody-
namic responses measured with fMRI and contrast this with other
approaches to model-based fMRI. Our objective here is to high-
light how the dynamic field approach is an example of integrative
cognitive neuroscience (Turner et al., 2017). We then ask if this
approach yields useful information by simulating—for the first
time—a key finding from the literature using a neural process
model. We then generate a set of novel predictions and test them
in an fMRI experiment, using a GLM-based approach to model
testing. We conclude with an evaluation of our integrative cogni-
tive neuroscience approach—have we achieved a model that ef-
fectively bridges between brain and behavior? We address this
question by placing our approach within the context of the theo-
retical literature on VWM and contrasting our model with other
psychological and neuroscience models in the field.

A Dynamic Field Theory of Visual Working Memory

The model we evaluate was developed within the framework of
DFT (Schoner & Spencer, 2015). Thus, we begin with a brief
review of the concepts of DFT. This theoretical framework has a
long history in psychology and neuroscience dating back almost 30
years (Buss & Spencer, 2014, 2018; Buss, Wifall, Hazeltine, &
Spencer, 2014; Erlhagen & Schöner, 2002; Kopecz & Schöner,
1995; Perone, Molitor, Buss, Spencer, & Samuelson, 2015; Per-
one, Simmering, & Spencer, 2011; Schöner & Thelen, 2006;
Schutte & Spencer, 2009; Schutte, Spencer, & Schoner, 2003;
Simmering, 2016; Simmering & Spencer, 2008; Thelen, Schöner,
Scheier, & Smith, 2001). Readers are referred to our recent book
for a more complete introduction (Schoner & Spencer, 2015).

Activity within populations of cortical neurons is hypothesized
to be the best neural correlate of behavioral performance (Cohen &
Newsome, 2008). Thus, we anchor our approach at this level. In
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particular, the theory we evaluate—a DFT of VWM (Johnson,
Spencer, Luck, et al., 2009; Johnson, Spencer, & Schöner, 2009)—
simulates the activity of neural populations from millisecond-to-
millisecond as the neural dynamic network engages in a particular
working memory task.

A central issue in neural population dynamics is stability—how
does a neural population stabilize a particular pattern through time
(Amari, 1977; Grossberg, 1980; Wilson & Cowan, 1972). This can
be formalized using the language of dynamical system theory.
Specifically, one can think about how the activity of a neural
population, u, changes through time, u̇, as a function of its current
state and other inputs to the population. These dynamics can be
formalized as follows:

u̇ � �u � h (1)

where u̇ is the rate of change in activation through time, u is the
current state of activation, and h is a collection of inputs to the field
that, when summed, modulate the resting level of the population.

If we plot the phase portrait of this system, that is, a plot of the
system in the space u by u̇, we see that the system is a linear

dynamical system (see red line in Figure 1A). There is a special
place in this linear plot where u̇ � 0. If activation, u, is set to this
value, then the rate of change is 0 and the system will stay put—it
will not change through time. This special place in the phase
portrait is called an attractor. In Equation 1, h is the attractor
state—when activation reaches this value, the rate of change in
activation is zero (if u � h, then u̇ � 0).

If we plot the behavior of this neural dynamic system through
time, we can see that it stays near this attractor position. This is
readily apparent when we add some neural noise to the equation,
�(t). For instance, in Figure 1B, we start the neural population at a
random value near h and simulate the dynamics through time,
adding a random value to the system at each time point (see
x-axis). For the first 250 time steps, we keep h at the value �4 (see
green line), and the system randomly wanders up and down, but
always stays near h. After 250 time steps, we then boost h to the
value �2 (see the magenta line in Figure 1A). This is like boosting
the overall excitability of the neural population (a common form of
neural interaction in the brain, see Bastian, Riehle, Erlhagen, &

Figure 1. Illustration of activation dynamics. (A and B) The phase-space and activation over time of a neuron
with linear dynamics. The purple line in panel A corresponds to the period of time in panel B during which
activation is boosted by an input, the red line in panel A corresponds to the other time points. (C and D) The
phase-space and activation over time of a neuron with nonlinear dynamics created through the addition of
self-excitation (note the curves in phase-space around the activation value of 0). When the neuron is boosted by
an input in panel D, self-excitation creates a nonlinearity that pulls activation fluctuations push activation back
below 0 and self-excitation is disengaged. (E and F) Corresponding activation profiles for these two different
systems in a field of interactive neurons. Note the correspondence in profiles between B–E and D–F. Solid
arrows in A and C indicate the location of attractors and the dashed arrow indicatest the location of a repeller.
See the online article for the color version of this figure.
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Schöner, 1998). The system jumps up to the activation value �2
(see Figure 1B), quickly finding the new attractor state. After
another 500 time steps, we return h to the value �4. Again, the
activation quickly moves to the new attractor state and stays
around this value.

Although this captures some features of neural population dy-
namics, this simple dynamical system fails to capture that neural
populations are inherently nonlinear. For instance, neural popula-
tions often require a robust input to “turn on,” and once they are
“on,” they are often “sticky”—they stay on even when there is
relatively little input (e.g., see Hock, Kelso, & Schöner, 1993).
This type of nonlinearity can be captured by adding a sigmoidal
function to the equation:

u̇ � �u � h � c * g(u) � �(t) (2)

where

g(u) � 1 ⁄ (1 � exp(��(u))) (3)

The sigmoidal function, g(u), has “output” that varies between 0
and 1. � defines the steepness of the transition from 0 to 1, and this
function is typically centered around a threshold value of 0 acti-
vation. Thus, as activation, u, increases from a negative “resting”
level toward 0, the sigmoidal function starts producing positive
output. At an activation value of 0, the sigmoidal function outputs
a value of 0.5. And at higher positive activation values, the
sigmoidal function saturates at an output of 1.0. Note that the
output of the sigmoidal function is multiplied by a connection
strength, c, in Equation 2.

To understand the consequence of this sigmoidal function, con-
sider the phase portrait of this new system in Figure 1C when
h � �4 (red line). Notice the S-shaped bend in the system as it
approaches the value u � 0 (the threshold value). We can see that
at negative values of u (when g(u) � 0), the system follows the
equation u̇ � �u � h, while at large positive values of u (when
g(u) � 1), the system follows the equation u̇ � �u � h � c.
However, there is still only a single attractor state at h � �4 (see
solid arrows). Consequently, this system will always stay near this
attractor state. This is shown in Figure 1D. Note how the system
behaves just like the linear system for the first 250 time steps.

Critically, when we boost h from �4 to �2 as before, the
nonlinear system goes through a bifurcation, that is, the attractor
layout changes (see magenta line in Figure 1C). Now the system
has two attractor states—one near �2 (the new “resting” level
defined by h) and one at 3 (the value h � c, where c � 5 in this
example). Moreover, in between these two attractors is a repeller
indicated by the dashed arrow. Figure 1D shows that this changes
how the neural population behaves through time. When the excit-
ability of the neural population is boosted by raising h to �2, the
system quickly moves to this new attractor state. However, after
another 250 time steps (around time point 500) the system jumps
to the value h � c and remains stably activated in this on state
through time. The behavior of this system inspires an analogy—the
neural population has detected the presence of a weak input, and
the system has kicked itself into an on state. Note that this state is
stable, but not permanent. For instance, once we decrease h back
to the initial resting value at time Step 750 (see green line in Figure
1D), the activation eventually settles back to the original attractor
state. This is reflected in Figure 1C—recall that at a low h value,
there is only one stable attractor state.

This nonlinear dynamical system captures several key properties
of neural population dynamics (e.g., bistability; see Tegnér,
Compte, & Wang, 2002); however, the system can only represent
that something is present or absent (i.e., that activation is high or
low). To enrich the system, we need to think about how to
represent the dimensions within which the neural system is em-
bedded. In DFT, this is done by thinking about the tuning curves
of neurons in a population. Neurons in cortex are sensitive to
particular types of information, typically in a graded way. For
instance, some neurons are “tuned” to spatial dimensions (Con-
stantinidis & Steinmetz, 2001)—they prefer stimuli, say, to the left
side of the retina. Other neurons are tuned to color dimensions
(Matsumora, Koida, & Komatsu, 2008; Xiao, Wang, & Felleman,
2003)—they like blue hues. These tuning functions are typically
quite broad (Wachtler, Sejnowski, & Albright, 2003); this means a
color neuron will respond really vigorously to blue hues, but also
quite a bit to cyan, and maybe even a bit to pink as well.

How do we incorporate these tuning functions into the neuronal
dynamics picture? We can integrate these concepts using dynamic
fields (DFs) where each neuron contributes its tuning curve
weighted by its current firing rate to an activation field (Erlhagen
et al., 1999). This tuning of neural units creates a direct link
between activation fields in DFT and task dimensions varied in
experiments that has predicted a wide range of behavioral data
(Buss & Spencer, 2014; Buss et al., 2014; Johnson, Spencer, Luck,
et al., 2009). To make this concrete, start with 100 neural sites
instead of just one. Each site will have the same neural dynamics
as before; however, now that we have 100 neural sites, we have to
think about how they are connected to one another across the
cortical field. We will wire them up using a canonical lateral
connectivity pattern with local excitation and surround inhibition
(Amari, 1977; Compte et al., 2000; Wilson & Cowan, 1972), and
the “ordering” of sites along the represented dimension will be
based on their tuning curves. This means that neurons that “like”
similar spatial locations or similar colors will pass strong, recip-
rocal excitation to one another because they are close together in
the field, while neural sites that like very different locations or
colors will share reciprocal inhibition because they are far apart in
the field. Mathematically, this can be summarized as follows
(Amari, 1977; Wilson & Cowan, 1972):

�eu̇(x, t) � �u(x, t) � h � s(x, t) � � ce(x � x�)g(u(x�, t))dx�

� � ci(x � x�)g(u(x�, t))dx� � �(x�, t) (4)

Note the similarities to the neuronal dynamics in Equation 2;
however, now activation is distributed over the behavioral dimen-
sion, x (e.g., color). Similarly, inputs, s(x, t), are distributed over x;
thus, a red input (x � 25) is different from a blue input (x � 60).
The laterally excitatory connections are defined by ce (an excit-
atory Gaussian connection matrix), while the inhibitory connec-
tions are defined by ci (an inhibitory Gaussian connection matrix).
As before, these are convolved with the sigmoidal function, g(u).
This means that only above-threshold sites in the field contribute
to neural interactions, that is, to local excitation and surround
inhibition. Neural interactions for each location, x, are evaluated
relative to every other position in the field, x. Lastly, �e specifies
the timescale over which excitation evolves in the field.
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To understand the consequences of the lateral connectivity in a
dynamic field—how neural sites talk to one another based on their
neural tuning—it is useful to first plot activation with connectivity
and the sigmoidal function turned off. Figure 1E shows the same
type of simulation as in Figure 1A and 1B where we start with low
excitability, then boost excitation locally, and then return to a
lower resting level. Now, however, we do the boosting by giving
a color input to the field centered at value 25 (see gray “shadow”
along the feature axis). Specifically, the input is off for 250 time
steps, then on for 500 time steps, and then weaker for the last 250
time steps. As can be seen in Figure 1E, the activation in the
dynamic field just mimics the input through time (see light gray
shadow projected along the back wall of the image). Thus, without
any lateral connectivity or sigmoidal modulation, the activation is
feed-forward or input-driven.

Figure 1F shows the same input sequence, but now with lateral
connectivity and sigmoidal modulation switched on (akin to the
simulation in Figure 1C and 1D). Initially, the cortical field is
stably at rest, that is, at the value defined by h. At Time 250, the
color is presented and sites that are tuned to red are activated.
Around time Step 500, noise fluctuations boost several sites
around color value 25 into the on state—they go above-threshold
as defined by the sigmoidal function. Consequently, these neural
sites start passing activation to their “neighbors.” The result is the
large peak of activation centered over color value 25. The shadow
along the feature axis shows the structure of this peak—one can
see strong local excitation with inhibitory “troughs” on either side
of the peak.

Peaks in dynamic fields are the basic unit of representation
accounting for detection, selection, and working memory cognitive
states. Peaks are a stable attractor state of the neural population.
Note how the peak in Figure 1F retains its shape through time,
even amid the neural noise evident in this simulation. This attractor
state is not permanent, however; once the strength of input is
reduced, the peak reduces in strength, eventually relaxing back to
the original resting level. Of interest to the authors—as we show
below—we can increase the strength of neural interactions in the
field by increasing the strength of local excitation and surround
inhibition and activation peaks show a form of working memory:
peaks of activation can be stably maintained through time even
when the input is removed (Fuster & Alexander, 1971).

Recent work has offered more biophysically detailed models of
these base functions (Deco et al., 2004; Durstewitz, Seamans, &
Sejnowski, 2000; Wei, Wang, & Wang, 2012), showing how
spiking networks together with synaptic dynamics can reproduce,
for instance, a sustained activation peak (often called a “bump”
attractor). Although these newer models are computationally more
detailed, we can ask: is all of this detail necessary for linking brain
and behavior? Critically, there are drawbacks to this level of detail:
the link of biophysical models to behavioral data is much weaker
than for DFT, and the number of parameters and range of dynam-
ical states are much larger. Thus, we do not anchor our account at
this level. Nevertheless, there are links between DFT and biophys-
ical models: under simplified assumptions, the population-level
neural dynamics of DFT may be obtained from the Mean Field
approximation (Faugeras, Touboul, & Cessac, 2009). We leverage
this understanding here to derive a relationship between DFT and
fMRI, adapting biophysical accounts for how neural activity gives

rise to the BOLD signal (Deco et al., 2004; Logothetis, Pauls,
Augath, Trinath, & Oeltermann, 2001).

The link between DFT and the Mean Field approximation
establishes that there is a theoretical connection between neural
population dynamics in DFT and theories of spiking network
activity. We can also ask if this connection extends beyond theory
to practice—can we directly measure properties of neural popu-
lation dynamics captured by DFT in real brains? This issue was
initially explored using multiunit neurophysiology in the 1990s. In
several studies of neural activity in premotor cortex, results
showed that predictions of DF models of motor planning were
evident in multiunit recordings from premotor cortical neurons
(Bastian et al., 1998; Bastian, Schoner, & Riehle, 2003; Erlhagen
et al., 1999; Jancke et al., 1999). More recently, this connection
has been explored using voltage-sensitive dye imaging in visual
cortex (Markounikau, Igel, Grinvald, & Jancke, 2010). Again,
properties of neural population dynamics in DF models such as
slowing of neural responses because laterally inhibitory interac-
tions were evident in cortical recordings. From these examples, we
conclude that DFT offers a good approximation of the dynamics of
populations of neurons in cortex. This sets the stage to expand this
line of work to human cognitive neuroscience techniques such as
fMRI.

We have now reviewed the basic concepts of neural population
dynamics in cortical fields that underlie DFT. The next step is to
couple multiple DFs together to create a neural architecture that
implements specific cognitive processes in a neural way. In the
next section, we describe a neural architecture designed to capture
how people encode and consolidate features in VWM, how they
remember these features during a delay, and how they compare
these remembered features with the features in a test array to
generate “same” and “different” decisions.

A Dynamic Field Model of VWM

We situate the DF model within the canonical task used to study
VWM—the change detection task (Luck & Vogel, 1997). Partic-
ipants are shown a sample array with multiple objects. After a
delay, a test array is displayed and participants decide whether the
sample and test arrays are the same or different. Previous work has
focused on encoding and maintenance in this task, resulting in
debates about whether VWM consists of fixed-resolution “slots”
(Luck & Vogel, 1997) or a distributed resource (Bays & Husain,
2008). Other work has investigated the biophysical properties of
neural networks that give rise to sustained activation in VWM
(Wei et al., 2012). Critically, detecting change requires that en-
coding and maintenance be integrated with comparison. The DF
model provides the only formal account that specifies how this
integration occurs in a neural system to generate same and differ-
ent responses (Johnson et al., 2014; Johnson, Spencer, Luck, et al.,
2009).

Figure 2 shows the architecture of the DF model (see online
supplemental materials for model equations and parameters). The
model consists of four components that are interconnected yet
serve particular functional roles (see online Supplemental Materi-
als Tables S1 and S2). The contrast field (CF) and WM layers have
populations of color-sensitive neurons that build peaks of activa-
tion through local-excitatory connections reflecting the presented
colors (see also Engel & Wang, 2011). Inputs are presented
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strongly to the CF layer that leads to the formation of peaks of
activation within this field during stimulus presentation. These
peaks then send activation to the WM field that also builds peaks
of activation at the location of the inputs (see peaks in WM layer
in Figure 2). Both fields pass inhibition to one another through a
shared inhibitory layer (not visualized in Figure 2 for simplicity).
Through this pattern of coupling, the model dynamics operate such
that CF becomes suppressed (see inhibitory profile in CF layer in
Figure 2) once items are consolidated within the WM field and the
inputs are removed. When items are represented at test, inputs that
match peaks in WM will be suppressed in CF, while nonmatching
inputs will build peaks in CF. During this phase of the trial, the
model engages in a winner-take-all comparison process by boost-
ing the same and different nodes close to threshold (via activation
of a “gate” node; see Figure 2). The different node receives input
from CF; the same node receives input from WM. Consequently,
if the model detects nonmatching inputs at test, different will win
the competition; if, however, no or few nonmatching inputs are
detected, same will win the competition because of strong input
from WM. It is important to point out that the input to the same
node is effectively normalized by input from the inhibitory layer to
enable equitable comparisons with the different node as the set-
size (SS) increases (see Equation 7 in the online supplemental
materials). That is, as the SS increases, more items will be acti-
vated in WM, generating more input to the same node. This would
create a large asymmetry between activation in the same and
different systems, making it hard to detect differences at high SS.
To help compensate for this asymmetry, the Inhib layer also sends
inhibitory output to the same node, effectively balancing the in-
crease in excitation from WM at high SS with an increase in
inhibition from Inhib (that also increases at high SS).

Before describing the dynamics of the model in detail, it is
useful to first consider the following dynamic field equation that

defines the neural population dynamics of the CF layer to connect
to the concepts introduced in the previous section:

�eu̇(x, t) � �u(x, t) � h � s(x, t) � � cuu(x � x�)g(u(x�, t))dx�

� � cuv(x � x�)g(v(x�, t))dx� � auvglobal � g(v(x�, t))dx�

� � cr(x � x�)�(x�, t)dx� � audg(d(t)) � aumg(m(t))

(5)

Activation, u, in CF evolves over the timescale determined by
the � parameter (see online supplemental materials). The first three
terms term in Equation 5 are the same as in Equation 4. Next is
local excitation, �cuu�x � x��g�u�x�, t��dx�, which is defined as the
convolution of a Gaussian local excitation function, cuu(x � x=),
with the sigmoided output, g(u(x=, t)), from the CF layer. CF
receives inhibition from an inhibitory layer, v. Lateral inhibitory
contributions are specified by, � �cuv�x � x��g�v�x�, t��dx�, which is
defined as the convolution of a Gaussian surround inhibition
function and the sigmoided output from an inhibitory layer (v).
There is also a global inhibitory contribution specified by,
� auv_global�g�v�x�, t��dx�, which is applied homogenously across
the field. These two inhibitory terms give rise to inhibitory troughs
that surround local excitatory peaks in the contrast layer. The next
term specifies spatially correlated noise, �cr�x � x����x�, t�dx�,
which is defined as the convolution of a Gaussian kernel and a
vector of white noise. This simulates a set of noisy inputs to CF
reflecting neural noise impinging upon this local neural popula-
tion. The last two terms specify inputs from the decision nodes (see
Figure 2). Both of these inputs are modulated by the sigmoidal
function (g). The different node (d) globally excites CF, audg(d(t)),
while the same or “match” node (m) globally inhibits
CF, �aumg(m(t)). These excitatory and inhibitory inputs help main-
tain peaks in CF if a difference is detected, and help suppress
activation in CF if “sameness” is detected (see “crossing” inhibi-
tory connections between the decision nodes and CF/WM in
Figure 2). Note that there is no direct input from WM to CF.

Figure 3 shows an exemplary simulation of a single change
detection trail to show how activation changes through time as the
model encodes items into memory, maintains memory representa-
tions during a delay, and then detects a difference in a subse-
quently presented stimulus array. Figure 3A shows activation
across the feature space in CF and WM through time. Figure 3B
shows the node activations through time. The remaining panels
show time slices through CF and WM at particular points during
the simulation indicated by the boxes in Figure 3A (see also
downward arrows marking the same time points in Figure 3B).

At 100 ms into the simulation, three colored stimuli (three
Gaussian inputs) are presented to the model. Initially, this is
associated with large increases in activation in CF; a bit later,
peaks build in the WM layer (see Figure 3A). As activation
builds in WM, activation in CF becomes suppressed. After 600
ms into the simulation, the stimulus array is turned off. Now,
activation within CF is strongly suppressed (see troughs in
Figure 3C). However, activation in WM is sustained in the
absence of the input throughout the delay period (see Figure
3D) because of strong recurrent interactions within this layer.
At 1,800 ms into the simulation, a second array of stimuli is

Figure 2. Model architecture. Excitatory connections are indicated by
lines with pointed end and inhibitory connections are illustrated with lines
with balled end. Connections with parallel lines (i.e., between “Different”
and contrast field [CF] and between “Same” and working memory [WM])
are engaged when the Gate node is activated. Connections with perpen-
dicular lines (i.e., from CF to WM) are turned off when the Gate node is
activated. See the online article for the color version of this figure.
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presented to the model. At presentation of the test array, the
gate node is activated (Figure 3B); this boosts the activation of
the same and different nodes. At the same time, the presentation
of the novel color (C4) leads to the formation of a new peak in
CF (Figure 3E). This peak increases the activation of the
different node and this node goes above threshold (Figure 3B)
leading to a different decision on this trial.

A key innovation of the DF model is that the model captures
what happens on both correct and incorrect trials. Figure 4
shows exemplary simulations of instances in which the model
performs correctly or incorrectly on each trial type in the
change detection task. Figure 4A shows a correct rejection
trial— correctly responding same on a same trial. Note that we
are using terminology from the literature on visual change
detection here (Cowan, 2001; Pashler, 1988). A sample array of
four colors is presented at the start of the simulation, generating
peaks in CF. Peaks in CF drive the consolidation of the peaks
in the WM field, after which activation within CF becomes
suppressed. This is shown in the lower left panels of Figure 4A:
at the offset of the memory array, 4 peaks are being actively
maintained in WM while there is a profile of inhibitory troughs
in CF. During the memory delay, activation is maintained
within WM via recurrent interactions. When the same four
colors are presented at test, no peaks are built in CF (see
asterisks above CF input locations in Figure 4A). The decision
nodes are plotted at the top. At the end of the trial, the same
decision is above threshold indicating the that the model has
correctly generated a same response.

Figure 4B shows a simulation of a hit trial— correctly de-
tecting a change on a different trial. The dynamics during the
presentation of the memory array are comparable. In particular,
at the offset of the memory array, four peaks are being actively
maintained in WM, with a profile of inhibitory troughs in CF.
During the test array, a new item is presented (C5) along with

three of the original inputs (C2–C4); the new input generates a
peak in CF at this color value because there is not enough
inhibition at this site to prevent the peak from emerging (see
asterisk above CF in Figure 4B). The peak in CF passes strong
input to the different node such that by the end of the trial, the
different node is above threshold indicating that the model has
correctly generated a different response.

The bottom two panels in Figure 4 show the model’s perfor-
mance on error trials. Figure 4C shows a false alarm trial—
incorrectly generating a different response on a no change trial.
False alarms are likely to arise in the model when a peak fails
to consolidate in WM. This is shown in the lower left panels of
Figure 4C: after presentation of the memory array, one peak
fails to consolidate (fails to go above threshold; see asterisk)
and activation at this site returns to baseline levels during the
delay. Consequently, when the same colors are presented at test,
the model falsely detects a change (see asterisk above CF in the
right column of Figure 4C). In contrast to other models (Cowan,
2001; Pashler, 1988), therefore, false alarms reflect a failure of
consolidation or maintenance rather than a guess.

A “miss” trial is shown in Figure 4D—incorrectly generating
a same response on a change trial. This simulation shows a
typical state of the neural dynamics after presentation of the
memory array, with four peaks being maintained in WM and an
inhibitory profile in CF. Note, however, the strong inhibitory
suppression on the left side of the feature space as there are
three WM peaks relatively close together. Consequently, when
a different color is presented in that region of feature space, a
weak activation bump is generated in CF (see asterisk above CF
in Figure 4D). This bump is too weak to drive a different
response and the same node wins the decision-making compe-
tition (see top panel in Figure 4D). Thus, in contrast to assump-
tions of other models (Cowan, 2001; Pashler, 1988), compari-
son is not a perfect process in the DF model; misses occur even

Figure 3. Model dynamics. (A) Activation of the model architecture on a set-Size 3 trial. (B) Activation of the
decision nodes over the course the trial. (C and D) Time-slices from contrast field (CF) and working memory
(WM) at the offset of the memory array (note the corresponding boxes in panel A). (E and F) Time-slices from
CF and WM during the presentation of the test array (note the corresponding boxes in panel A). In this trial, a
different color value is presented during the test array (note the above-threshold activation in panel E) and the
model responds “different” (note the activation profile of the decision nodes in panel B). See the online article
for the color version of this figure.
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when all items are remembered. This aspect of the DF model is
consistent with more recent work illustrating how comparison
errors can impact performance on WM tasks (Alvarez & Ca-
vanagh, 2004; Awh, Barton, & Vogel, 2007).

Note that errors in the DF model are impacted by stochastic
noise in the equations—a realistic source of neural noise that is
evident in actual neural systems. These fluctuations are ampli-
fied by local excitatory/inhibitory neural interactions and can
influence the macroscopic patterns—peaks in the model—that
impact different behavioral outcomes such as same and differ-
ent decisions. Notice, for instance, that the inputs across all four
panels in Figure 4 are identical; the parameters of the model are
identical as well. Thus, the only thing that differs is how the
activation dynamics unfold through time in the context of
neural noise. Of course, noise is not the only factor that influ-

ences whether the model makes an error. The number of inputs
plays a large role as does the metric similarity of the items.
With more peaks to maintain, there is more competition among
peaks as well as more global inhibition. Consequently, the
likelihood of a false alarm increases because neighboring peaks
might fail to consolidate in WM. At the same time, with more
peaks in WM, there is also a greater overall suppression of CF
and stronger input to the same node. Consequently, the likeli-
hood of a miss increases as well.

Are there unique neural signatures of the processes illustrated in
Figure 4? If so, that would provide a way to test our account of the
origin of errors in change detection. To examine this question here,
we used an integrative cognitive neuroscience approach initially
developed in Buss et al. (2014) and Wijeakumar, Ambrose, et al.
(2017). We describe this approach next.

Figure 4. Model performing different trial types. (A) The model correctly performing a “same” trial. At the
offset of the memory array, the working memory (WM) field has built peaks corresponding to the four items in
the memory array. During test when the same item are presented, activation in contrast field (CF) stays below
threshold (note the asterisks above CF). Here, the model responds “same” (note the activation of the decision
nodes). (B) The model correctly performing a “different” trial. Now, during the test array, a new item is
presented that goes above threshold in CF (note the asterisk above CF). (C) The model performing a same trial
but generating an incorrect response. At the offset of the memory array, the WM field has failed to consolidate
one of the items into memory (note the asterisk above WM). Subsequently, during the presentation of the same
items during the test array, the corresponding stimulus goes above threshold in CF (note the asterisk above CF)
and the model generates a different response. (D) The model performing a different trial but generating an
incorrect response. In this example, the model has overly robust activation with the WM field which leads to
stronger inhibition within CF and a failure of the new item to go above threshold in CF (note the asterisk above
CF). See the online article for the color version of this figure.
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Turning Neural Population Activation in DFT Into
Hemodynamic Predictions

In this section, we describe a linking hypothesis derived from the
model-based fMRI literature that directly links neural dynamics in
DFT to hemodynamics that can be measured with fMRI. This requires
consideration of multiple factors, including what is measured by fMRI
both in terms of hemodynamics and spatially in patterns of blood
oxygen level dependent (BOLD) within voxels through time. Here,
we make several simplifying assumptions that we discuss. The end
product is a direct link—millisecond-by-millisecond—between neu-
ral activation in the DF model and fMRI measures through time as
well as to behavioral decisions on each trial. Although the timescale
of fMRI does not allow for millisecond precision, the model is
specified at that fine-grained timescale and, therefore, could be
mapped to other technologies such as ERP in future work (we return
to this issue in the General Discussion). Critically, this approach
extends beyond previous model-based approaches (Ashby & Wald-
schmidt, 2008; O’Doherty, Dayan, Friston, Critchley, & Dolan,
2003). Specifically, this approach specifies mechanisms that directly
give rise to behavioral and neural responses; consequently, any mod-
ifications to these mechanisms directly impact the resultant behavioral
and neural responses predicted by the model. To illustrate, we contrast
our approach with model-based fMRI examples using the adaptive
control of thought-rational (ACT-R) framework. We conclude that the
DF-based approach is an example of an integrative cognitive neuro-
science approach to fMRI (Turner et al., 2017).

Our approach builds from the biophysiological literature examining
the basis of the neural blood flow response. Logothetis and colleagues
(2001) demonstrated that the local-field potential (LFP), a measure of
dendritic activity within a population of neurons, is temporally cor-
related with the BOLD signal. Furthermore, the BOLD response can
be reconstructed by convolving the LFP with an impulse response
function that specifies the time course of the blood flow response to
the underlying neural activity. Deco and colleagues followed up on
this work using an integrate-and-fire neural network to demonstrated
that an LFP can be simulated by summing the absolute value of all
of the forces that contribute to the rate of change in activation of the
neural units (Deco et al., 2004). Attempts to simulate fMRI data using
this approach were equivocal—some hemodynamic patterns pro-
duced by the network did qualitatively mimic fMRI data measured in
experiment; however, no efforts were made to quantitatively evaluate
the fit of the spiking network model to either the behavioral or fMRI
data.

Here, we adapt this approach to construct an LFP signal for each
component of the DF model. To describe how we transform the
real-time neural activation in the model into a neural prediction that
can be measured with fMRI, reconsider the equation that defines the
neural population dynamics of the CF layer (reproduced here for
convenience):

�eu̇(x, t) � �u(x, t) � h � s(x, t) � � cuu(x � x�)g(u(x�, t))dx�

� � cuv(x � x�)g(v(x�, t))dx� � auvglobal � g(v(x�, t))dx�

� � cr(x � x�)�(x�, t)dx� � audg(d(t)) � aumg(m(t))

(6)

To simulate hemodynamics, we transformed this equation into
an LFP equation that we could track in real time (millisecond-by-
millisecond) for each component of the model (see Equations
9–14 in online supplemental materials). This time-course was then
convolved with an impulse response function to give rise to
hemodynamic predictions that could be compared with BOLD
data. To illustrate, Equation 7 specifies the LFP for the contrast
field: we summed the absolute value of all terms contributing to
the rate of change in activation within the field, excluding the
stability term, �u(x,t), and the neuronal resting level, h. We also
excluded the stimulus input, s(x, t), because we applied inputs
directly to the model rather than implementing these in a more
neurally realistic manner (e.g., by using simulated input fields as in
Lipinski, Schneegans, Sandamirskaya, Spencer, & Schöner, 2012).
The resulting LFP equation was as follows:

uLFP(t) �
| �� cuu(x � x�)g(u(x�, t))dx dx� |

�

�
| �� cuv(x � x�)g(v(x�, t))dx dx�) |

�

� | auvglobal � g(v(x�, t))dx� |

�
| �� cr(x � x�)�(x�, t)dx dx� |

�
� | audg(d(t)) |

� | aumg(m(t)) | (7)

It is important to note several simplifying assumptions here.
First, neural activity in the CF field was aggregated into a single
LFP (representing a single neural region). We consider this a
starting point for explorations of this model-based fMRI approach.
An alternative would be to use several basis functions to sample
different parts of the field and then explore the mapping of these
localized LFPs to voxel-based patterns in the brain. Later in
the article, we quantitatively map hemodynamic predictions from
the DF model to BOLD signals measured from 1 cm3 spheres
centered at regions of interest from a meta-analysis of the fMRI
VWM literature (Wijeakumar, Spencer, Bohache, Boas, & Mag-
notta, 2015). At this resolution (1 cm3), slight variations in hemo-
dynamics because of which part of the field we are sampling from
probably make little difference. By contrast, if we were studying
population dynamics in visual cortex with a 7T scanner in different
laminar layers, the use of basis functions to sample the field would
be an interesting alternative to explore.

Similarly, in Equation 7 we normalized each contribution to the
LFP by dividing by the number of units in that contribution, either
by 1 (e.g., for the “same” node) or by �, the field size. This way,
contributions to the CF LFP from, say, the different node were of
comparable magnitude to contributions from local excitatory in-
teractions. Again, this is a simplifying assumption that can be
explored in future work. For instance, there is an emerging liter-
ature examining how excitatory versus inhibitory neural interac-
tions differentially contribute to the BOLD signal (Lee et al.,
2010). It would be possible to differentially weight these types of
contributions to the LFP in future work as clarity emerges on this
front. In the simulations reported below, we down-weighted all
inhibitory LFP components by a factor of 0.2.
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Once an LFP has been calculated from each component of the
DF model—one LFP for CF, one for WM, one for different, and
one for same—a hemodynamic response can then be calculated by
convolving uLFP with an impulse response function that specifies
the time-course of the slow blood-flow response to neural activa-
tion (see Equation 15 in the online supplemental materials). The
simulated hemodynamic time course for each component was
computed as a percent signal change relative to the maximum
intensity across the run. Average responses for each trial-type
within each component were then computed within the relevant
time window (14 s for the simulations of the Todd and Marois data
and 20 s for the Magen et al. data) as the amount of change relative
to the onset of the trial (see online supplemental materials for full
details). A group average for each trial type was then computed
across the group of runs.

Figure 5 shows an exemplary simulation of the model for a
series of eight trials with a memory load—or SS—of two items for
the first two trials and four items for the subsequent six trials.
Panels A–C show neural activation of the decision nodes and
associated LFPs/hemodynamic predictions through time. In par-
ticular, panel C shows the activation of the decision and gate
nodes, highlighting the evolution of decisions that reflect the overt
behavior of the model. Going from left to right, the model makes
eight decisions in sequence (see labels at the bottom of the figure):
(1) “different” (correct), (2) “same” (correct), (3) “different” (cor-
rect), (4) “different” (incorrect), (5) “same” (incorrect), (6) “same”
(correct), (7) “different” (correct), and (8) “same” (correct). Note
that the long delays in-between trials accurately reflects the typical
delays between trials in a neuroimaging experiment. We have
fixed this time interval here to make it easier to see the hemody-
namic response associated with each trial (that is delayed by
several seconds reflecting the slow hemodynamic response); crit-
ically, however, we can match these intertrial intervals precisely to
reflect the actual timings used in experiment.

Panels A and B in Figure 5 show the LFP and hemodynamic
responses for the same and different nodes, respectively. In gen-
eral, the decision node hemodynamics are strongly influenced by
the inhibition at test evident in the winner-take-all competition. For
instance, the first trial is a different (correct) trial. Here, the
different node wins the competition, but notice that the same
(Figure 5A) hemodynamic response is stronger than the different
hemodynamic response (Figure 5B); even though different wins
the competition with strong excitatory activation, the same hemo-
dynamic response is stronger because of to the inhibitory input to
this node. This is counterintuitive—the node with the stronger
hemodynamic response is actually the one that loses the competi-
tion. We test this prediction using fMRI later in the article.

Note that it is possible we could reverse the counterintuitive
decision-node prediction in the model in two ways. First, the
magnitude of the inhibitory contribution to the decision node
dynamics could be reduced via parameter tuning. This would be
tricky to achieve, however, because the decision system dynamics
have to balance “just right” such that the full pattern of behavioral
data are correctly modeled. If, for instance, inhibition is too weak,
the model might respond same at high memory loads simply
because there are so many peaks in WM and, therefore, strong
input to the same node at test. Thus, there are strong constraints in
model parameters—if we try to tune the neural or hemodynamic

predictions so they make more intuitive sense, the model might no
longer accurately fit the behavioral data.

That said, there is a second way we could modify the hemody-
namic predictions of the decision nodes more directly, making
them less dominated by inhibition: we could down-weight the
inhibitory contributions within the LFP equation itself. Doing so
would be more akin to a “two-stage” approach as outlined by
Turner et al. (2017) in which separate parameters are used to
generate behavioral responses and neural responses. However, by
doing so we could implement the hypothesis that inhibitory con-
tributions to LFPs are weaker than excitatory contributions, a
hypothesis that could be explored using optogenetics (e.g., Lee et
al., 2010). To do this, we could add a new inhibitory weighting
parameter to Equation 7 to reduce the strength of the inhibitory
contributions (i.e., the second, third, and sixth terms in the equa-
tion). Note that this would have to be applied to all inhibitory terms
in the full model; consequently, inhibition would have less of an
effect on the decision-node hemodynamics, but it would also have
less of an effect on the CF and WM hemodynamics as well. We
explore this sense of parameter tuning in the first simulation
experiment.

Panels E and G in Figure 5 show the activation of CF and WM,
respectively. Note that all of the activation dynamics highlighted in
the field activities in Figure 3A still occur here; however, these
dynamics are compressed in time as we are showing a sequence of
eight trials with relatively long intertrial intervals. That said, on
each trial, the sequence of stimulus presentations is evident in CF
at the start and end of each trial (see peaks at the onset and offset
of each inhibitory period in Figure 5E), while the active mainte-
nance of peaks in WM is also readily apparent (Figure 5G).

Panels D and F in Figure 5 show the LFP and hemodynamic
predictions for CF and WM. CF is influenced by whether the trial
is same or different, with a slightly stronger response in CF on
different trials (see, for instance, the large first and third hemody-
namic peaks; we show this more clearly later in the article when
we aggregate LFPs across many simulation trials vs. the individual
simulations as shown here). WM is most strongly influenced by
how many items are maintained during the delay; thus, this layer
shows relatively weaker responses on the first two trials when the
memory load is two items compared with the subsequent trials
when the memory load is four items.

In summary, Figure 5 illustrates over a series of trials how the
model generates a complex pattern of predictions associated with
the neural processes that underlie encoding and consolidation of
items in WM, the maintenance of those items during the memory
delay, and decision-making and comparison processes at test.
LFPs and hemodyanmic responses are extracted from the same
patterns of neural activation that drive neural function and behav-
ioral responses on each trial. In this way, distinct neural dynamics
are engaged across components of the model as different types of
decisions unfold in the context of the change detection task and
these directly lead to hemodynamic predictions. The distinctive
nature of these simulated neural responses is important for being
able to use the model to shed light on the functional role of
different brain regions in VWM. For instance, if we find a good
correspondence between model hemodynamics and hemodynam-
ics measured with fMRI, this uniqueness gives us confidence that
we can infer different functions are being carried out by those
brain regions.
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Comparisons With Other Model-Based
fMRI Approaches

Beyond the literature on VWM, other model-based approaches
to fMRI analysis have been implemented that bridge the gap

between brain and behavior (see Turner et al., 2017 for an excel-
lent summary and classification of different approaches). In our
previous article exploring a model-based fMRI approach using
DFT (Buss et al., 2014), we compared the DFT approach to the
model-based fMRI approach using ACT-R. Comparing these ap-

Figure 5. Illustration model activation dynamics and hemodynamics. (A, B, D, and F) Stimulated local field
potential (solid lines) and corresponding hemodynamic responses (dashed lines) from the “same” node (A),
“different” node (B), contrast field (CF; D) and working memory (WM; F). (C, E, and G) Activation of model
components over a series of eight trials (note the labels at the bottom that categorize each trial type) for the
decision nodes (C), CF (E), and WM (G). LFP � local-field potential; HDR � hemodynamic response. See the
online article for the color version of this figure.
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proaches is a useful starting point as there are similarities in the
broader goals of DFT and ACT-R.

Anderson and colleagues have developed a technique for sim-
ulating fMRI data with the ACT-R framework (Anderson, Albert,
& Fincham, 2005; Anderson et al., 2008; Anderson, Qin, Sohn,
Stenger, & Carter, 2003; Borst & Anderson, 2013; Borst, Nijboer,
Taatgen, van Rijn, & Anderson, 2015; Qin et al., 2003). ACT-R is
a production system model that explains behavioral data based on
the duration of engagement of processing modules and differential
engagement of these modules across conditions. Specifically,
ACT-R models posit a cognitive architecture consisting of separate
modules that are recruited sequentially in a task. This generates a
“demand” function for each module through time—a time course
of 0 s and 1 s with 1s being generated when a module is active. The
demand function can then be convolved with a hemodynamic
response function (HRF) for each module to generate a predicted
BOLD signal for each component of the architecture. The pre-
dicted hemodynamic pattern can then be compared against brain
activity measured with fMRI in specific brain regions to determine
the correspondence between modules in the model and brain
regions.

This approach is similar to the DFT-based approach used here.
Both ACT-R and DFT build architectures to realize particular
cognitive functions. Both measure activation through time for each
part of the larger architecture. These activation signals are then
convolved with an impulse response function to generate predicted
BOLD signals for each component. By comparing these predicted
signals to fMRI data, the components can be mapped to brain
regions and function can be inferred from this mapping. This can
be done by qualitatively comparing properties of the predicted
brain response through time to measured HRFs (e.g., Buss et al.,
2014; Fincham, Carter, van Veen, Stenger, & Anderson, 2002).
We adopt this approach in the first simulation experiment here.
Model-predicted data can also be quantitatively compared with
measured fMRI data using a general linear modeling approach
(e.g., Anderson, Qin, Jung, & Carter, 2007). We adopt this ap-
proach in the subsequent simulation experiment.

In the review of model-based fMRI approaches by Turner and
colleagues (Turner et al., 2017), they used the ACT-R approach as
an example of ICN. Recall that the goal of ICN is to develop a
single model capable of predicting both neural and behavioral
measures. Formally, ICN approaches use a single model with a
single set of parameters, 	, that jointly explain both neural and
behavioral data. Consequently, such models must make a moment-
by-moment prediction of neural data, and a trial-by-trial prediction
of the behavioral data. One can see why ACT-R might be a good
example of ICN: the model specifies the activation of each module
in real time, and this activation affects the model’s neural predic-
tions because it changes the demand function (the vector of 0 s and
1 s through time). Differences in activation also affect behavior,
for instance, modulating RTs.

Given the similarities between ACT-R and DFT, we can ask if
DFT rises to the level of ICN as well. Like with ACT-R, DFT
proposes a specific integration of brain and behavior. In particular,
there are not separate neural versus behavioral parameters; rather,
there is one set of parameters in the neural model and changes
in these parameters have direct consequences for both neural
activity—the LFPs generated for each component—and for the
behavioral decisions of the model—whether the same or different

node enter the on state and when in time this decision is made
(yielding a RT for the model).

These examples highlight that in DFT, brain and behavior do not
live at different levels. Instead, there is one level—the level of
neural population dynamics. This level generates neural patterns
through time on a millisecond timescale. This level also generates
macroscopic decisions on every trial via the neural population
activity of the same and different nodes. When one of these nodes
enters the on attractor state at the end of each trial, a behavioral
decision is made. In this sense, we contend that DFT—like ACT-
R—is an example of an ICN approach.

Given the many similarities in these two approaches to model-
based fMRI, we can ask the next question: are there key differ-
ences? The most substantive difference is in how the two frame-
works conceptualize “activation” and, relatedly, how they
implement processes through time. As demonstrated in Figures
3–5, the activation patterns measured in each neural population in
the DF model are more than just an index of the engagement of the
population; rather, activation has meaning—it represents the colors
presented in the task. This was emphasized in our introduction to
DFT. Although activation and, in particular, the neural dynamics
that govern activation, are key concepts in DFT, we moved beyond
the level of activation to think about what activation represents by
modeling activation in a neural field distributed over a feature
dimension.

Critically, by grounding activation in a specific feature space we
also had to specify the neural processes through time that do the
job of consolidating features in WM, maintaining those features
through time, and then comparing the features in WM with the
features in the test array. Thus, our model not only specifies what
activation means; it also specifies the neural processes that un-
derlie behavior, that is, the neural processes that give rise to the
macroscopic neural patterns that underlie same or different deci-
sions on each trial. The details of this neural implementation have
consequences for the activation patterns produced by the model. If
we, for instance, changed how encoding and consolidation were
done by adding new layers to the model to separate visual encod-
ing from shifts of attention to each item (Schneegans, Spencer, &
Schöner, 2016), the model would generate different activation
patterns through time and, consequently, different hemodynamic
predictions.

By contrast, activation in ACT-R is abstract. Each module takes
a specific amount of time which creates differences in the demand
or activation function, but the modules in ACT-R typically do not
actually implement anything; rather, they instantiate how long the
process would take if it were to implement a particular function.
Sometimes modules are actually implemented (Jilk, Lebiere,
O’Reilly, & Anderson, 2008), but this has not been done with any
fMRI examples.

Is this difference in how activation is conceptualized important?
To evaluate this question, consider a recent model of VWM using
ACT-R (Veksler et al., 2017). At face value, this model sets up an
ideal contrast—in theory, we could contrast the model-based fMRI
prediction of our DF model with model-based fMRI predictions
derived from the Veksler et al. ACT-R model. To explain why we
cannot do this, it is useful to first describe the Veksler et al. model.

The Veksler et al. model uses the ACT-R memory equation to
implement a variant of VWM. Each item in the display is associ-
ated with an activation level in the memory module that is a

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

13MODEL-BASED FMRI



function of whether it was fixated or encoded, how recently it was
fixated or encoded, a decay rate, a base-level offset for activation,
and logistically distributed noise with a mean of 0 and a specific
standard deviation. To place this model in the context of change
detection, we must first make some decisions about how encoding
works. For instance, in many change detection experiments, fixa-
tion is held constant, so we could assume that a specific number of
items start off at a baseline activation level. We could also hy-
pothesize that each item takes a certain amount of time to encode
and then let the model encode as many items as it can in the time
allowed.

After encoding, the next key issue is which items are still
remembered after the delay when memory is tested. Concretely,
the memory module specifies an activation value of each item
through time. If that activation value is above a threshold when
memory is tested, that item is remembered. If the activation is
below threshold at test, that item is forgotten.

The challenging question is what to do in this model at test.
Each item is only represented by an activation level—there is no
content. Consequently, it’s not clear how to do comparison. One
idea is to assume that comparison is a perfect process. This is
similar to assumptions in the original models of VWM by Pashler
(1988) and Cowan (2001). Thus, if an item is remembered, we
always get a correct response. If an item is forgotten, then we
could just have the model randomly guess. Sometimes the model
will generate a lucky guess. Other times the model will guess
incorrectly, generating a false alarm or a miss.

Although this approach sounds reasonable, it does not actually
do a good job modeling behavior because performance varies as a
function of whether the test array is the same or different. In
particular, adults are typically more accurate on same trials than
different trials (Luck & Vogel, 1997); children and aging adults
show this effect more dramatically (Costello & Buss, 2018; Sim-
mering, 2016; Wijeakumar, Magnotta, & Spencer, 2017). If the
model has a perfect comparison process, it is not clear how to
account for such differences unless one simply builds in a bias in
the guessing rate with more same guesses than different guesses.
This approach to comparison does not generate any predictions
about the activation level on “guess” trials when an item is for-
gotten because the underlying demand function would be the same
on all guess trials. This doesn’t match empirical data because we
know that fMRI data vary on “correct” versus “incorrect” trials, as
well as on false alarms versus misses (Pessoa & Ungerleider,
2004).

In summary, when we try to implement change detection in the
ACT-R VWM model, we run into a host of questions with no clear
solutions. Critically, many of these questions are centered on the
main contrast with DFT that, in ACT-R, there is activation but no
details about what activation represents. This example also high-
lights how important the comparison process is to predicting
neural activation. On this front, we reemphasize that to our knowl-
edge, DFT is the only model of VWM that specifies a mechanism
for how comparison is done. This observation will have conse-
quences below—although there are many models of VWM, be-
cause none of them specify how comparison is done this means
that no other models make hemodynamic predictions that we can
contrast with DFT where comparison is part of the unfolding
hemodynamic response. Instead, we opt for a different model-

testing strategy by contrasting DFT with a standard statistical
model.

Simulations of Todd and Marois (2004) and Magen,
Emmanouil, McMains, Kastner, and Treisman (2009)

The goal of this article is to examine whether DFT is a useful
bridge theory, simultaneously capturing both neural and behav-
ioral data to directly address the neural mechanisms that underlie
cognitive processes (Buss & Spencer, 2018; Buss et al., 2014;
Wijeakumar, Ambrose, et al., 2017). Here we ask whether the
model can simulate two findings from the fMRI literature that
describe different relationships between intraparietal sulcus (IPS)
and VWM performance. One set of data show that neural activa-
tion as measured by BOLD asymptotes as people reach the puta-
tive limit of working memory capacity. In particular, Todd and
Marois (2004) reported that the BOLD signal in the IPS increases
as more items must be remembered with an asymptote near the
capacity of VWM. This suggests that the IPS plays a direct role in
VWM. This basic effect has been reported in multiple other studies
as well (Todd & Marois, 2004; Xu & Chun, 2006; for related ideas
using EEG, see Vogel & Machizawa, 2004). In contrast, a second
set of results shows that the BOLD response in the IPS does not
asymptote when the memory delay is increased in duration (Magen
et al., 2009). From this observation, Magen and colleagues pro-
posed that the posterior parietal cortex is more involved with the
rehearsal or attentional processes that mediate VWM, rather than
being the site of VWM directly. Here we ask if the DF model can
shed light on these differing brain-behavior relationships, explain-
ing the seemingly contradictory set of results.

These initial simulations serve two functions. First, they provide
an initial exploration of whether the LFP-based linking hypothesis
generates hemodynamics from the DF model that are qualitatively
similar to measured BOLD responses. This is a nontrivial step
because simulating both brain and behavior requires integrating
the neural processes that underlie encoding, consolidation, main-
tenance, and comparison. The present experiment explores
whether we get this integration approximately right. Second, this
experiment serves to fix parameters of the DF model. Specifically,
we allowed for some parameter modification here as we attempted
to fit behavioral data from Todd and Marois (2004). We then fixed
the model parameters when simulating data from Magen et al.
(2009) as well as in a subsequent experiment where we generated
novel, a priori neural predictions that could be tested with fMRI.

Method

Simulations were conducted in Matlab 7.5.0 (Mathworks, Inc.)
on a PC with an Intel i7 3.33 GHz quad-core processor (the Matlab
code is available at www.dynamicfieldtheory.org). For the pur-
poses of mapping model dynamics to real-time, one time-step in
the model was equal to 2 ms. For instance, to mimic the experi-
mental paradigm of Todd and Marois (2004), the model was given
a set of Gaussian inputs (e.g., 3 colors � 3 Gaussian inputs
centered over different hue values) corresponding to the sample
array for a duration of 75 time-steps (150 ms). This was followed
by a delay of 600 time-steps (1,200 ms) during which no inputs
were presented. Finally, the test item was presented for 900 time-
steps (1,800 ms). For the simulation of the Magen et al. (2009) task
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(Experiment 3), the sample array was presented for 250 time-steps
(500 ms), followed by a delay of 3,000 time-steps (6,000 ms) and
a test array that was presented for 1,200 time-steps (2,400 ms). For
both simulations, the response of the model was determined based
on which decision node became stably activated during the test
array (see Figures 3–5). Recall that the local-excitation or lateral-
inhibition operating on the decision nodes gives rise to a winner-
take-all dynamics that generates a single active (i.e., above 0)
decision node at the end of every trial.

The central question here was whether the neural patterns gen-
erated by the model mimic the differing BOLD signatures reported
by Todd and Marois (2004) and Magen et al. (2009). To examine
this question, we first used the model to simulate the behavioral
data from Todd and Marois (2004). We initialized the model using
the parameters from Johnson, Spencer, Luck, et al. (2009), then
modified parameters iteratively until the model provided a good
quantitative fit to the behavioral patterns from Todd and Marois
(2004). For example, the resting level of the CF component had to
be increased to accommodate for the shorter duration of the
memory array in the Todd and Marois study. To compensate for
the increased excitability of this component, we also had to reduce
the strength of its self-excitation (see Appendix for full set of
parameters and differences from the Johnson, Spence, Luck, et al.,
2009 model). We implemented the model to match the number of
participants from the target studies to facilitate statistical compar-
ison of the data sets. Specifically, we simulated the Model 17 times
in the Todd and Marois (2004) task to match the 17 participants in
this study, and 12 times in the Magen et al. (2009) task to match
the 12 participants in their study. We administered 60 same and 60

different trials at each set size for each simulation run. Group data
were then computed to compare with group data from these
studies. Once the model provided a good fit to the Todd and
Marois (2004) behavioral data, we then assessed whether compo-
nents of the model produced the asymptote in the IPS hemody-
namic response observed in the original report. This was indeed
the case. These model parameters were then used to simulate data
from Magen at al. (2009) as well as in the subsequent fMRI
experiment to test novel predictions of the model.

Results

As shown in Figure 6A, the model captured the behavioral data
from Todd and Marois (2004) well overall with root mean square
error (RMSE) � 0.063. It is important to note that the model was
able to reproduce these data even though there were many differ-
ences in the behavioral task between this study and the study by
Johnson, Spencer, Luck, et al. (2009) that was used to generate the
model. The duration of the memory array was shorter in the Todd
and Marois task (100 ms compared with 500 ms in Johnson et al.)
and the memory delay was longer (1,200 ms compared with 1,000
ms in Johnson et al.). To highlight these differences, Table 1
summarizes the different versions of the change detection task that
have been previously modeled using DFT.

Critically, the model showed a pattern of differences between
activation over SS that reproduced the asymptote effect in CF
(shown in panel B of Figure 6 along with fMRI data from IPS from
Todd & Marois, 2004). Thus, the CF component replicated the
pattern of activation reported by Todd and Marois from IPS.

Figure 6. Simulations of Todd and Marois (2004). (A) Behavioral performance and model simulations. (B)
Blood oxygen level dependent (BOLD) response from intraparietal sulcus (IPS) across memory loads of 1, 2, 3,
4, 6, and 8 items (left) and simulated hemodynamic response from contrast field (CF) layer (right). (C) Simulated
hemodynamic response from the other three components of the model. DF � Dynamic Field; WM � working
memory. See the online article for the color version of this figure.
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Comparing SS1–4 with each other, there was a significant increase
in the average time course of the hemodynamic response for the
contrast layer as SS increased (all p 
 .01). As reported by Todd
and Marois (2004), there was not a significant difference in the
hemodynamic time course between SS4 and SS6, t(16) � 0.1187,
p � .907 or SS4 and SS8, t(16) � 0.5188, p � .611. These data
show a good correspondence between the neural dynamics from
CF and the measured hemodynamic responses of IPS.

To examine whether the asymptotic effect was unique to CF, we
examined the hemodynamic patterns produced by the other model
components (Figure 6C). The same node also produced evidence
of an asymptote in the simulated hemodynamic response (compar-
ing SS1 through SS4: p 
 .001; SS4 vs. SS6: t(16) � 0.2589, p �
.799). However, a decrease in activation was observed between
SS4 and SS8, t(16) � �7.927, p 
 .001. The WM field and the
different node did not produce a statistical asymptote in activation.
The WM field showed a systematic increase in the hemodynamic
response (HDR) over set sizes (all t(16) � 16.1290, p 
 .001). The

different node showed a decrease in activation from SS1 to SS4
(t(16) � 3.8783, p 
 .002), a trending difference between SS4 and
SS6, t(16) � 2.024, p � .06, and an increase in activation between
SS6 and SS8, t(16) � 7.3788, p 
 .001. These results illustrate that
different components of the model can yield distinct patterns of
hemodynamics based on how these components are activated over
the course of a task.

We next examined whether the same model with the same
parameters could also simulate behavioral and IPS data from
Experiment 3 in Magen et al. (2009). Simulation results this task
are shown in Figure 7. As can be seen, the model approximated the
behavioral data well (now presented as capacity, Cowan’s K,
instead of percent correct) with an overall RMSE � 0.477 (Figure
7A). The hemodynamic data from the model did not show a
double-humped pattern; however, none of the model components
showed an asymptote in this long-delay paradigm, consistent with
the steady increase in activation evident in data from posterior
parietal cortex from Magen et al. (2009). In particular, activation

Table 1
Summary of Variations in the Change Detection Task That Have Been Simulated by the DF Model

Publication N subjects SSs
Array 1
duration

Delay
duration

Test array
type

Johnson, Spencer, Luck, et al. (2009);
Experiment 1a 10 3 500 ms 1,000 ms Single-item

Todd and Marois (2004); Experiment 1 17 1–4, 6, 8 100 ms 1,200 ms Single-item
Magen, Emmanouil, McMains, Kastner, and

Treisman (2009); Experiment 3 12 1, 3, 5, 7 500 ms 6,000 ms Single-item
Costello and Buss (2018); Experiment 1 26 1, 3, 5 500 ms 1,200 ms Whole-array
Current report 16 2, 4, 6 500 ms 1,200 ms Whole-array

Note. SS � set size; DF � Dynamic Field.

Figure 7. Simulations of Magen et al. (2009). (A) Behavioral performance and model simulations. (B) Blood
oxygen level dependent (BOLD) response from posterior parietal cortex (PPC) across memory loads of 1, 3, 5,
and 7 items (left) and simulated hemodynamic response from contrast field (CF) layer (right). (C) Simulated
hemodynamic response from the other three components of the model. DF � Dynamic Field; WM � working
memory. See the online article for the color version of this figure.
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increased across set sizes for the CF, WM, and same node com-
ponents (all t(11) � 3.031, p 
 .02). The hemodynamic response
produced by the different node decreased in amplitude between
SS1 and SS3, t(11) � �10.817, p 
 .001 and from SS3 to SS5,
t(11) � �5.6792, p 
 .001. The amplitude of the hemodynamic
response did not differ between SS5 and SS7, t(11) � 0.006, p �
.995.

Discussion

These results represent an important step in model-based ap-
proaches to fMRI. To our knowledge, this is the first demonstra-
tion of a fit to both behavioral and fMRI data from a neural process
model in a working memory task. Simultaneously integrating
behavioral and neural data within a neurocomputational model is
an important achievement (Turner et al., 2017). This points to the
utility of DFT as a bridge theory in psychology and neuroscience.

The DF model is also the first neural process model to quanti-
tatively reproduce the asymptotic pattern from IPS reported by
Todd and Marois (2004). The asymptote in the HDR was observed
most robustly in the CF component. The asymptote in CF was
because of the dynamics that give rise to the inhibitory filter within
this field. As more items are added to the WM field, each item
carries weaker activation because of the buildup of lateral inhibi-
tion. Consequently, less inhibition is passed from the Inhib layer to
CF as the set size increases. An asymptote was also partially
observed in the same node. In this case, the asymptote was because
of the effect of inhibition weakening the average synaptic output
per peak within the WM field.

The hemodynamics within the WM field grew at each increase
in set-size because of the combined influence of inhibitory and
excitatory synaptic activity. Strictly speaking, the model does have
a carrying capacity in terms of the number of peaks that can be
simultaneously maintained (Spencer, Perone, & Johnson, 2009).
The model is capacity-limited for two reasons. First, there are
crowding effects: each new color peak that is added to the field has
an inhibitory surround that can suppress the activation of metri-
cally similar color values (see, Franconeri, Jonathan, & Scimeca,
2010). Second, each peak increases the amount of global inhibition
across the field; consequently, it becomes harder to build new
peaks at high set sizes (for detailed discussion, see Spencer et al.,
2009). However, there is not a direct correspondence in the model
between the number of peaks that it can maintain and the capacity
estimated by its performance, that is, the maximum number of
peaks in WM is not the same as capacity estimated by K (see
Johnson et al., 2014). In this sense, the continued increase in
WM-related activation across set sizes evident in Figure 6 simply
reflects that the model has not yet hit its neural capacity limit.

This set of results challenges prior interpretations of neural
activation in VWM. That is, a hypothesized signature of working
memory—the asymptote in the BOLD signal at high working
memory loads—is not directly reflected in cortical fields that serve
a working memory function; rather, this effect is reflected in
cortical fields directly coupled to working memory (CF and the
same node in the case of the DF model) via the shared inhibitory
layer. More concretely, the primary synaptic output impinging
upon CF is the inhibitory projection from Inhib. As peaks are
added to WM, activation saturates in this field as does the amount
of activation within the inhibitory layer. Thus, the asymptotic

effect is a signature of neural populations coupled to WM systems
rather than the site of WM itself.

Multiple empirical papers have reported evidence of an asymp-
tote in IPS in VWM tasks, some using fMRI (Ambrose, Wijeaku-
mar, Buss, & Spencer, 2016; Magen et al., 2009; Todd & Marois,
2004, 2005; Xu, 2007; Xu & Chun, 2006) and some using elec-
troencephalogram (EEG; Sheremata, Bettencourt, & Somers,
2010; Vogel & Machizawa, 2004). Although the asymptote effect
is consistent, there is variability in the details of the asymptote
effect across studies and associated neural indices. Several papers
have reported that the asymptote effect varies systematically with
individual differences in behavioral estimates of capacity (see
Todd et al., 2005). For instance, Vogel and Machizawa (2004)
showed that increases in the contralateral delay amplitude in
parietal cortex from a memory load of two to four items correlates
with individual differences in capacity measured with Cowan’s K.
Other studies, however, have not replicated this link to individual
differences. Xu and Chun (2006) found correlations between K and
increases in brain activity in IPS for simple features, but no
significant correlation for complex features. Magen et al. (2009)
reported a divergence between behavioral estimates of capacity
and brain activity in IPS. Similarly, Ambrose et al. (2016) found
no robust correlations between behavioral estimates of capacity
and brain activity across manipulations of colors and shapes.

Other studies have used the asymptote effect to investigate the
type of information stored in IPS. Xu (2007) reported that IPS
activation varies with the total amount of featural information
people must remember. Xu and Chun (2006) modified this con-
clusion, suggesting that superior IPS activity varies with featural
complexity while inferior IPS activity varies with the number of
objects that must be remembered. Variation with featural complex-
ity was also reported by Ambrose et al. (2016), but this effect
extended to multiple areas including ventral occipital cortex and
occipital cortex. More recently, data from Sheremata et al. (2010)
suggest that left IPS remembers contralateral items, but right IPS
contains two populations, one for spatial indexing of the contralat-
eral visual field and another involved in nonspatial memory pro-
cessing.

Critically, all of these studies adopt the same perspective—that
the asymptote effect points toward a role for IPS in memory
maintenance. We found one exception to this view: Magen et al.
(2009) suggest that IPS activity may reflect the attentional de-
mands of rehearsal rather than capacity limitations per se as
activation increases above capacity in some conditions. The per-
spective offered by the DF model may be most in line with Magen
et al. (2009) in that our findings suggest IPS does not play a central
role in maintenance but rather comparison.

Additionally, we showed that the same model could reproduce
the pattern of hemodynamic responses reported by both Todd and
Marois (2004) and Magen et al. (2009). In particular, the model
showed an asymptote in the Todd and Marois short-delay para-
digm as well as the absence of a asymptote in the Magen et al.
long-delay paradigm. Why are there these differences? In large
part, this comes down to the relative coarseness of the hemody-
namic response. In the short-delay paradigm, activation differ-
ences in CF at high set sizes are relatively short-lived and, there-
fore, fail to have a big impact on the slow hemodynamic response.
In the long delay condition, by contrast, activation differences in
CF at high set sizes extend across the entire delay; consequently,

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

17MODEL-BASED FMRI



these differences are reflected even in the slow hemodynamic
response.

Although the DF model did a good job capturing the magnitude
of the hemodynamic response in IPS, simulations of data from
Magen et al. (2009) failed to capture the shape of the hemody-
namic response—the double-humped hemodynamic response that
has been observed across multiple studies (Todd, Han, Harrison, &
Marois, 2011; Xu & Chun, 2006). We examined this issue in a
series of exploratory simulations and found that the details of the
HDR played a role in the nonoptimal fit. In particular, if we rerun
our simulations with a narrower HDR that starts later and lasts for
less time (see blue line in online Supplemental Materials Figure
1A), we still effectively simulate IPS data from both studies and
see more of a double-humped hemodynamic response for simula-
tions of data from Magen et al. (with “humps” at the right points
in time). That said, we were not able to show the dramatic dip in
CF hemodynamics around 12 s that is evident in the data. We
suspect that this could be achieved by down-weighting the inhib-
itory contributions to the LFP more strongly. This highlights a key
direction for future work that adopts a two-stage approach to
optimizing DF models—a first stage of getting the fits to neural
data approximately right and a second stage where parameters of
the HDR and the LFP¡HDR mapping are iteratively optimized to
fit neural data.

More generally, the present simulations show how neural pro-
cess models can usefully contribute to a deeper understanding of
what particular fMRI signatures like the asymptote effect actually
indicate. To our knowledge, the asymptote effect has only been
simulated using abstract mathematical models (see Bays, 2018 for
a recent comparison of plateau vs. saturation models). Although
this can be useful, it can be difficult to adjudicate between com-
peting theories at this level as the myriad papers contrasting slot
and resource models can attest (e.g., Brady & Tenenbaum, 2013;
Donkin et al., 2013; Kary et al., 2016; Rouder et al., 2008; Sims et
al., 2012). Our results show that neural process models can shed
new light on these debates, clarifying why particular neural and
behavioral patterns are evident in some experiments and not oth-
ers.

In the next section, we seek more direct evidence of the neural
processes implemented in the DF model. The model not only
simulates the asymptote in activation observed in IPS, but makes
quantitative predictions regarding neural dynamics on both correct
and incorrect trials. Thus, we describe an fMRI study optimized to
test hemodynamic predictions of the DF model. We then use our
integrative cognitive neuroscience approach combined with gen-
eral linear modeling to create a mapping from the neural dynamics
in the DF model to neural dynamics in the brain.

Testing Novel Predictions of the DF Model:
An fMRI Study of VWM

Having fixed the model parameters via simulations of data from
Todd and Marois (2004), we examined our central question—
whether the DF model predicts the localized neural dynamics
measured with fMRI as people engage in the change detection task
on both correct and incorrect trials. Because the model generates
specific neural patterns on every type of trial (see Figure 4), an
optimal way to test the model is in a task where each trial type
occurs with high frequency. Thus, we developed a change detec-

tion task that would yield many correct and incorrect trials for
analysis, but above-chance responding (ensuring that participants
were not guessing). Below we describe the task and details of the
fMRI data collection. We then present behavioral data from a
preliminary behavioral study and the fMRI study along with be-
havioral simulation results from the DF model. This sets the stage
for a detailed examination of whether the hemodynamic patterns
predicted by the model are evident in the fMRI data and whether
such patterns are localized to specific brain regions that can be said
to implement the particular neural processes instantiated by model
components.

Materials and Method

Participants. Nineteen participants completed the fMRI
study; data from three of these participants were not included in
the final analyses because of equipment malfunction and unread-
able fMR images (distribution of the final sample: 7 males; Mage �
25.7 years, SD age � 4.2 years). Nine additional participants
completed a preliminary behavioral study (3 males; M age � 23.4
years, SD age � 2.2 years). Informed consent was obtained from
all participants and all research methods were approved by the
Institutional Review Board at the University of Iowa. All partici-
pants were right-handed, had normal or corrected to normal vision,
and did not have any medical condition that would interfere with
the MR machine.

Behavioral task. Each trial began with a verbal load (two
aurally presented letters lasting for 1,000 ms; see Todd & Marois,
2004). Then an array of colored squares (24 � 24 pixels; 2° visual
angle) was presented for 500 ms (randomly sampled from CIE-
�Lab color-space at least 60° apart in color space). Squares were
randomly spaced at least 30° apart along an imaginary circle with
a radius of 7° visual angle. Next was a delay (1,200 ms) followed
by the test array (1,800 ms). Trials were separated by a jitter of
either 1.5, 3, or 5 s selected in a pseudorandom order in a ratio of
2:1:1 ratio, respectively. On same trials (50%), items were repre-
sented in their original locations. On different trials, items were
again represented in the original locations but the color of a
randomly selected item was shifted 36° in color space (see Figure
8A). Participants responded with a button press. On 25% of trials,
the verbal load was probed (adding 500 ms to the trial; see Todd
& Marois, 2004; M correct � 75%, SD � 13%). This ensured that
participants could not use verbal working memory to complete the
task (because verbal working memory was occupied with the letter
task). Participants completed five blocks of 120 trials (three blocks
at SS4; one block each of SS2, SS6) in one of two orders
(2,4,6,4,4; 6,4,2,4,4). Each block was administered in an individual
scan that lasted for 1,040 s. A robust number of error trials were
obtained at SS4 (FA: M � 28.7, SD � 10.4; Miss: M � 65.8, SD �
15.3) and SS6 (FA: M � 12.9, SD � 4.5; Miss: M � 31.1, SD �
6.4).

fMRI acquisition. The fMRI study used a 3T Siemens TIM
Trio system using a 12-channel head coil. Anatomical T1 weighted
volumes were collected using an MP-RAGE sequence. Functional
BOLD imaging was acquired using an axial two dimensional (2D)
echo-planar gradient echo sequence with the following parameters:
TE � 30 ms, TR � 2,000 ms, flip angle � 70°, FOV � 240 � 240
mm, matrix � 64 � 64, slice thickness/gap � 4.0/1.0 mm, and
bandwidth � 1920 Hz/pixel.
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fMRI preprocessing. Standard preprocessing was performed
using AFNI (Version 18.2.12) that included slice timing correc-
tion, outlier removal, motion correction, and spatial smoothing
(Gaussian FWHM � 5 mm). The time series data were trans-
formed into MNI space using an affine transform to warp the data
to the common coordinate system. The T1-weighted images were
used to define the transformation to the common coordinate sys-
tem. T1 images were registered to the MNI_avg152T1 � tlrc
template. The coordinates for the regions of interest described by
Wijeakumar et al. (2015) were used to define the centers of 1 cm3

spheres. Because the time series data was mapped to a common
coordinate system, the average time course for each participant
was then estimated using the defined sphere.

Simulation method. Simulations were conducted as de-
scribed above with the inputs modified to reflect the timing and
stimuli properties (e.g., color separation) in the task given to
participants. Initial observations indicated that the small metric
changes in the task made detecting changes difficult in the model.
Thus, to obtain better fits to the behavior data we changed one
model parameters governing the resting level of the different node.
For the previous simulations this value was �9, but for our version
of the task with small metric changes we increased this value
to �5 to be closer to threshold.

Behavioral Results and Discussion

Figure 8 shows the behavioral data from the preliminary behav-
ioral study (Figure 8B), from the fMRI study (Figure 8C), and

from the model (Figure 8D). Note that error bars were generated
by running multiple iterations of the model and calculating stan-
dard deviation across runs. A two-way analysis of variance
(ANOVA; SS � Change trial) on the behavioral data from the
fMRI study revealed main effects of SS, F(2, 15) � 153.06, p 

.001 and Change trial, F(1, 16) � 88.90, p 
 .001 and an
interaction between SS and Change trial, F(2, 15) � 10.98, p 

.001. Follow up t tests showed that participants performed signif-
icantly better on SS2 compared with both SS4, t(16) � 16.29, p 

.001 and SS6, t(16) � 14.00, p 
 .001, and better on SS4
compared with SS6, t(16) � 7.31, p 
 .001. Participants per-
formed better on Same trials compared with Different trials at SS2,
t(16) � 3.843, p 
 .001, SS4, t(16) � 8.47, p 
 .001, and SS6,
t(16) � 8.13, p 
 .001. All participants performed better than
chance suggesting that they were not simply guessing (all t val-
ues �4.5, p 
 .001).

The DF model that simulated data from Todd and Marois (2004)
and Magen et al. (2009) also captured the data from the fMRI
study and the preliminary behavioral study well (RMSE � 0.11
across both data sets) demonstrating that the model generalizes to
behavioral differences across tasks (see Table 1). In summary,
behavioral data from the present study show that participants
generated many correct and incorrect responses, yet remained
above-chance in all conditions. This provides an optimal data set,
therefore, to test the neural predictions of the DF model regarding
the origin of errors in change detection. The model did a good job
reproducing these behavioral data with a single modification to a
parameter across simulations (changing the resting level of the
different node for our metric version of the task). This sets the
stage to test the neural predictions of the DF model to determine
whether the model can simultaneously capture both brain and
behavior.

Testing Predictions of the DF Model With GLM

To test the hemodynamic predictions of the model, we adapted
a general linear model (GLM) approach. As noted previously, it
would be ideal to test the DF model against a competitor model,
but no such competitor exists that predicts both brain and behavior.
Instead, we asked whether the DF model out-performs the standard
statistical modeling approach to fMRI data using GLM.

In conventional fMRI analysis, a model of brain activity that
has been parameterized for each stimulus condition is estimated
via linear regression. A set of parametric maps for each condi-
tion is then constructed and used to infer locations in the brain
where these model coefficients are statistically nonzero or
different between conditions. The proposed innovation is to use
the DF model to reparametize the GLMs because the DF model
predicts the expected patterns across conditions. The DF model
in this case constitutes a task-independent and transferable
bridge theory with the ability to make simultaneous task-
specific predictions of both brain and behavior. Note that this
approach is novel relative to existing fMRI methods such as
dynamic causal modeling (DCM; Penny, Stephan, Mechelli, &
Friston, 2004) in that most common variants of DCM use
deterministic state-space models while the DF model is stochas-
tic (but see Daunizeau, Stephan, & Friston, 2012). Moreover,
the DF model provides a direct link to behavioral measures
while DCM does not (but see Rigoux & Daunizeau, 2015 for

Figure 8. Task design and behavioral/simulation data. (A) A trial began
with a sample array consisting of 2, 4, or 6 colored items. Next came a
retention interval and presentation of a test array. On change trials (50% of
trials), one randomly selected item was shifted 36° in color space. (B)
Percent correct from behavioral study. (C) Percent correct from functional
magnetic resonance imaging (fMRI) study. In both studies, there were
many errors at set-Size 4, but performance was above chance, t(27) � 23.5,
p 
 .001. (D) Simulations reproduced the behavioral pattern. Error bars
show 1 SD. See the online article for the color version of this figure.
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steps in this direction). More generally, DF and DCM have
different goals with DCM using fMRI data to make hypothesis-
led inferences about interactions among regions, and DF pro-
viding a predictive model of both brain and behavior.

The next question was how to apply the GLM-based ap-
proach to the brain. One option is an exploratory whole-brain
approach. We opted, however, for a more constrained approach
using a recent meta-analysis of the VWM literature (Wijeaku-
mar et al., 2015). In particular, we extracted the BOLD response
from 23 regions of interest (ROIs) implicated in fMRI studies of
VWM. Twenty-one of these ROIs were from Wijeakumar et al.
(2015); we added two ROIs so all bilateral entries were present
with the exception of l superior frontal gyrus (SFG) that was
centrally located.

Consider what this GLM-based approach might reveal. It
could be that specific model components such as the WM field
capture variance in just 1 or 2 ROIs. This would constitute
evidence that the WM function was implemented in those
cortical areas. It is also possible, however, that multiple com-
ponents capture activation in the same ROI. In this case, we can
conclude that multiple functionalities are evident in this ROI
and the model does not unpack the specificity of the function.
For instance, the CF and WM fields work together during the
initial encoding and consolidation of the colors, while CF and
the different node conspire during comparison. In the brain,
these functionalities might be handled by separate but coupled
cortical fields. Indeed, we know this is the case already and
have proposed a more complex DF architecture to pull func-
tions like encoding and consolidation apart (see Grieben et al.,
2020). Unfortunately, this new model is more complex, harder
to fit to behavior, and has not been tested as fully as the model
used here. We acknowledge up front, then, that there might be
some lack of specificity in the mapping of model components to
ROIs that suggests more work needs to be done to articulate
what these brain regions are doing. Our hope is that the work we
present here gives us a theoretical tool to use as we search for
this more articulated understanding of VWM.

To determine whether the model statistically outperforms the
standard task-based GLM approach and makes accurate predic-
tions about activation in specific cortical regions, we used a
Bayesian Multilevel Model (MLM) approach using Equation 8
with d ROIs, N time points, and p regressors where Y is an N
by d data matrix, X is an N by p design matrix, W is a p by d
matrix of regression coefficients, and E is an N by d matrix of
errors (using functions provided by SPM12). The errors, E,
have a zero-mean Normal distribution with [d � d] precision
matrix �.

Y � XW � E (8)

A specific MLM can then be specified by the choice of the
design matrix. In the following analyses, we use regressors
derived from the DF model or sets of regressors capturing the
factorial design of the experiment (e.g., main effects of set-size,
accuracy, same/different, or interactions thereof). A Variational
Bayes algorithm (Roberts & Penny, 2002) was then used to estimate
the model evidence for each MLM, p(Y | m), and the posterior
distributions over the regression coefficients p(W | Y, m) and
noise precision p(� | Y, m). The model evidence takes into
account model fit but also penalizes models for their complexity

(Bishop, 2006; Penny et al., 2004). It can be used in the context
of random effects model selection to find the best model over a
group.

Method

To assess the quality of fit between the predicted hemodynamic
responses from the model components and the BOLD data ob-
tained from participants, we first ran the model through the fMRI
paradigm 10 times, calculating the average LFP timecourse for
each model component (different node, same node, CF, or WM) on
each trial type (same correct, same incorrect, different correct, or
different incorrect) for each set-size (2, 4, and 6). Figure 9 shows
the full set of hemodynamic predictions for all trial types and
components calculated from these LFPs (showing M HDR signal
change for simplicity). To the extent that the model captures what
is happening in the brain during change detection, we should see
these same patterns reflected in participants’ fMRI data. Note that
these predictions are quite specific. For instance, as noted previ-
ously, the same node shows a stronger hemodynamic response on
hits than on correct rejections. This holds across memory loads. By
contrast, the different node shows a stronger hemodynamic re-
sponse on hit and miss trials, except at the highest memory load
where the strongest hemodynamic response is on false alarms. This
reflects the strong different signal on false alarm trials at high
memory loads when a WM peak fails to consolidate. The other two
layers in the model—CF and WM—show strong effects of the
memory load, with an increase in activation as the set size in-
creases. Differences across trial types emerge in WM as the
memory load increases, with higher activation for miss and correct
rejection trials, that is, when the model responds same.

Figure 9. Average amplitude of hemodynamic response across model
components and trial types. This figure shows the variations in the ampli-
tude of the hemodynamic response when performing our version of the
change detection task (correct change trial � hit; correct same trial �
correct-rejection [CR]; incorrect change trial � Miss; incorrect same
trial � false alarm [FA]). CF � contrast field; WM �working memory.
See the online article for the color version of this figure.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

20 BUSS ET AL.



Next, the LFP timecourses were turned into subject-specific
time courses. These time courses were created by setting the time
windows corresponding to each trial equal to the average LFP
timecourse based on the timing and type of each trial for each
participant. For each participant, four separate time courses were
created corresponding to the LFPs from the different, same, CF,
and WM model components. The variations in timing in the time
courses for a participant reflect the random jitter between trials
from the fMRI experiment, while the variations in the trial types
reflect both the trial-by-trial randomization in trial types as well as
participant’s performance—whether each trial was, for instance, a
set Size 2 “correct” trial, a set Size 4 “incorrect” trial, and so on.
The LFP time courses were then convolved with an impulse
response function and down-sampled at 2 TR to match the fMRI
experiment. Individual-level GLMs were first fit to each partici-
pant’s fMRI data. These results were then evaluated at the group
level using Bayesian MLM.

Results

Categorical versus DF model. In a first analysis, we gener-
ated standard task-based regressors that include the stimulus tim-
ing for each trial type. For example, a standard task-based analysis
of the change detection task would model hemodynamic activation
across voxels with regressors for correct-same trials, correct-
change trials, incorrect-same trials, and incorrect-change trials at
each set-size—12 categorical regressors in total (4 trial types � 3
set sizes). To explore the full range of task-based models, we
specified eight models based on combinations of task-based re-
gressors: (1) a model with three factors that categorize trials based
on set-size, change, and accuracy (12 total task-based regressors),
(2) a model with two factors that categorize trials based on set-size
and change (six total task-based regressors), (3) a model with two
factors that categorize trials based on set-size and accuracy (six
total task-based regressors), (4) a model with two factors that
categorize trials based on change and accuracy (four total task-
based regressors), (5) a model with one factor that categorizes
trials based on set-size (three total task-based regressors), (6) a
model with one factor that categorizes trials based on change (two
total task-based regressors), (7) a model with one factor that
categorizes trials based on accuracy (2 total task-based regressors),
and (8) a null model (one constant regressor). For all of these
models, the hemodynamic response at each trial was modeled
based on the GAM function in AFNI.

Second, we generated regressors from the four components of
the DF model as described above. Note that all nine models were
individualized based on the specific sequence of trials for each
participant. Additionally, all models included six regressors based
on motion (roll, pitch, yaw, translations right-left, translations
inferior-superior, and translations anterior-posterior), six regres-
sors based on the motion regressors with a time lag of 1 TR, and
25 baseline parameters reflecting a four degree polynomial model
for the baseline of each of the five blocks. Lastly, all models were
normalized to have zero-mean unit variance among columns be-
fore model estimation (for each column, the mean was subtracted
and then divided by the standard deviation).

Random Effects Bayesian Model Comparison (Rigoux et al.,
2014; Stephan et al., 2009) was then implemented across all
models and participants using the statistical function provided by

SPM12. This method uses the concept of model frequencies,
which are the relative prevalence of models in the population from
which the sample subjects were drawn. For example, model fre-
quencies of 0.90 and 0.10 indicate a prevalence of 90% for Model
1 and 10% for Model 2. Random Effects Bayesian Model Com-
parison provides for statistical inferences over model frequencies
and Stephan et al. (2009) describe an iterative algorithm for
computing them. Initial inspection of the data revealed that fre-
quencies were nonuniform (Bayes Omnibus Risk (BOR) � 4.78 �
10�5). The DF model, accuracy categorical model, and change
categorical model had the largest frequencies of 0.44, 0.20, and
0.12, respectively. The probability that the DF model had the
highest model frequency (quantified using the “protected ex-
ceedance probability”) is PXP � 0.9312. This value is a posterior
probability so has no simple relation to a classical p value. The
posterior odds can be expressed as the product of the Bayes factor
and prior odds, or the log of the posterior odds can expressed as the
sum of the log of the Bayes factor and the log of the of the prior
odds. If the prior odds are unity (i.e., no hypothesis is preferred a
priori, as is the case in this article), then the log of the posterior
odds is equivalent to the log of the Bayes factor. For example, for
PXP � 0.9312, the log Bayes Factor is log [0.9312/(1–0.9312)] �
2.61 and the Bayes Factor is exp(2.61) � 13.5, meaning there is
13.5 times the evidence for the statement than against it. Conven-
tionally, a Bayes factor of 1 to 3 is considered “Weak” evidence,
3 to 20 as “Positive” evidence, and 20 to 150 as “Strong” evidence
(Kass & Raftery, 1995). It is in this sense that the DF model “best”
explains the fMRI data. In our group of 16 participants, the
posterior model probabilities were highest for the DF model for 10
individuals, the accuracy categorical model for four individuals,
and the change categorical model for two individuals. Table 2
shows the log Bayes Factors for the different models across
participants. These results indicate that some individuals showed
differences in activation across accuracy or change factors that
were not effectively captured by the DF model.

Testing the specificity of the DF model. It is an open ques-
tion to what extent the dynamics implemented by the model are
important for its explanatory value in the MLM results. One of our
key claims is that the neural dynamics that are implemented in the
model provide an explanation of what the brain is doing to give
rise to same or different decisions in the change detection task,
both on correct and incorrect trials. To probe this issue, we
generated new sets of four randomized DF regressors and reran the
MLM analysis. For each participant and for each trial, an LFP was
selected from a randomly determined trial type and component.
These LFPs were slotted in based on the timing of trials for each
individual participant and then convolved to generate sets of 4 DF
model regressors as described above. We refer to this as the
Random Trial and Component DF Model (DF-RTC). If the struc-
ture of activation within each component for each trial type is
important for the explanatory value of the model, then this model
should do poorly compared with the categorical model.

Results from the MLM analysis showed that observed model
frequencies were nonuniform (BOR � 1.20 � 10�5). In contrast
to the prior analysis, the DF model was not the most frequent;
rather, the accuracy categorical model, change categorical model,
and DF-RTC model had the largest frequencies of 0.47, 0.21, and
0.08, respectively. The probability that the accuracy categorical
model had the highest model frequency is PXP � 0.9459. Thus, in
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this new analysis, the accuracy categorical model best explains the
fMRI data. In our group of 16 participants, the posterior model
probabilities were highest for the accuracy categorical model for
11 individuals, the change categorical model for two individuals,
and the DF-RTC model for one individual. These results show that
the DF-RTC model regressors poorly explain the fMRI data when
the trial and component structure is removed.

Next, we asked whether preserving the component structure but
disrupting the trial structure would impact the explanatory power
of the DF model. To accomplish this, we generated new sets of
four DF regressors for each participant. In particular, an LFP was
selected from a randomly determined trial type on each trial, but
each regressor was sampled from a single component to maintain
the integrity of the component-level predictions. As before, these
LFPs were inserted into the predicted time series based on the
timing of each individual trial for each participant, the individual-
level GLMs were reestimated, and the MLM analysis was repeated
at the group level. We refer to this as the Random-Trial DF model
(DF-RT). If the specific structure of activation pattern across trials
within each component is important for the explanatory value of
the model, then this model should do poorly compared with the
categorical model. If, however, this model still captures the data
well, then this would suggest that the relative differences in acti-
vation dynamics across components are an important contributor
to the model’s explanation of the data.

In this new analysis, we observed that frequencies were non-
uniform (BOR � 4.78 � 10�5). The DF-RT model, accuracy
categorical model and change categorical model had the largest
frequencies of 0.44, 0.20, and 0.12, respectively. The probability
that the DF-RT model has higher model frequency than any other
model is PXP � 0.9312. Thus, the DF-RT model still “best”
explains the fMRI data. In our group of 16 participants, the
posterior model probabilities were highest for the DF-RT model
for 12 individuals, the accuracy categorical model for two indi-
viduals, and the change categorical model for two individuals.

We then asked whether the “standard” DF model provides a
better fit to the data than the DF-RT model. In this comparison, we

observed that frequencies were nonuniform (BOR � 0.0396). The
standard DF model had a frequency of 0.83 that was higher than
the DF-RT model frequency of 0.17 (PXP � 0.9789). Thus, the
standard DF model better explains the fMRI data compared with
the random-trial DF model. In our group of 16 participants, the
posterior model probabilities were highest for the standard DF
model for 15 individuals. Thus, the detailed predictions of the DF
model regarding how brain activity varies over trial types is, in
fact, important in capturing the fMRI data from the present study.

Are all DF model components necessary? The correlation
among the DF regressors was very high, most likely reflecting the
strong reciprocal connections between model components. Aver-
aged over the group, the maximum correlation was between CF
and WM (r2 � .93) and the minimum was between the same node
and WM (r2 � .52). Thus, it is important to assess whether all
model components are adding explanatory value.

We compared the model evidence of the full model with all four
regressors to four other models that eliminated one regressor.
These results indicated that removing the different node regressor
yielded a better model. Specifically, the frequency of this model
was higher than the other four models that were compared (PXP �
.9998). The model frequencies were nonuniform (BOR � 5.72 �
10�7) indicating a very low probability that the model frequencies
are equal (this is a posterior probability and can also be converted
into a Bayes Factor as above). We examined whether further
reducing the model would yield a better model. We compared the
model with the different node regressor removed to three other
models with one of the remaining three regressors removed. Re-
sults from this comparison indicated that the model with three
regressors had the highest model frequency, PXP � 1.0000, and
the model frequencies were significantly nonuniform (BOR �
2.26 � 10�7). From this we concluded that the best variant of the
DF model across participants was a three-regressor model with CF,
WM, and same regressors included.

In an additional MLM analysis, we examined how the reduced
model compared with the set of categorical models described
above. We observed that frequencies were nonuniform (BOR �

Table 2
Log Bayes Factors Across Models for All Subjects

Participant Null Set size (SS) Accuracy Change SS�Acc SS�Ch SS�Ch�Acc DF

1 813.1 447.9 402.3 388.2 526.7 530.7 464.7 638�

2 986.2 421.9 357.7 348.2 514.4 510.3 410.7 635.9�

3 1002 158.1 67.1 76.3 267.7 271.4 120.9 454.6�

4 583.7 18.5 �47.8� �42 103.2 115.1 19.8 245.6
5 529 167.2 94.3 127.8 214.3 252.3 135.1 302.1�

6 604.8 180.7 102.8 122.9 251.6 293.5 177.1 414.5�

7 844.8 �39.3 �91 �106.7� 91.5 63.3 �34 251.5
8 230.9 �80.8 �131.8 �141.5� �9.7 �6.4 �90.5 88.7
9 460.6 �15.1 �86� �79.4 56.6 69.5 �42.2 170.8

10 286.1 284.9 278.9 281.2 285.7 286.8 281 286.5�

11 1381 457 383.2 407.9 580.7 603.3 487.5 804.8�

12 1052 298.4 243.9 260.1 400.1 419 333.7 596.9�

13 261.2 115.1 58.4 58.5 157.7 178.9 102.9 202�

14 1207 317 255.6 286.2 471.2 496.1 384.4 755.8�

15† 420.9 54.6 �12.1� �1.4 123.9 128.2 39.8 231.7
16† 691.1 68.5 �19.6� 21 177 215 77.2 392.7

Note. Preferred model is indicated by asterisk (�). Negative values indicate cases in which a categorical model outperformed the Dynamic Field (DF)
model. The reduced DF model with three components was preferred by participants denoted with . The bolded values indicate the preferred model for
each participant.
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4.34 � 10�6). The DF model, accuracy categorical model, and
change categorical model had the largest frequencies of 0.52, 0.12,
and 0.12, respectively. The probability that the DF model has the
highest model frequency is PXP � 0.9922. Thus, the reduced DF
model still best explains the fMRI data. In our group of 16
participants, the posterior model probabilities were highest for the
DF model for 12 individuals, the accuracy categorical model for
two individuals, and the change categorical model for two indi-
viduals (see Table 2).

To explore why the different node regressor failed to contribute
much to model performance, we explored the multicollinearity of
the four DF regressors using Belsley collinearity diagnostics (Bels-
ley, 1991). This revealed that the three remaining regressors were
multicollinear (variance decompositions larger than .5), and that
the different node was independent of this collinearity (condIdx �
56.97; different � 0.3155, same � 0.8212, CF � 0.9945, WM �
0.9811). When we examined the connection weights between the
different node and the regions of interest, all of the regions with
relatively large different weightings had negative weights. Thus,
the different hemodynamics in the model appear to be relatively
distinct and inversely mapped to brain hemodynamics. This may
indicate that difference detection in the model is too simplistic. For
instance, evidence suggests that people typically both detect
changes in the test array and shift attention to the changed location
(Hyun, Woodman, Vogel, Hollingworth, & Luck, 2009); this sec-
ond operation is not captured by our model.

Mapping model components to cortical regions. The anal-
yses thus far indicate that the DF model provides a better account
of the fMRI data than eight standard categorical models, the trial
type and component structure of the DF model regressors both
matter to the quality of the data fits, and a streamlined three-
regressor DF model provides the most parsimonious account of the
data. Our next goal was to understand how the model maps onto
specific brain regions and which aspects of the fMRI data the
model captures. In this context, it is important to emphasize that
the beta weights for each component of the model are estimated
together along with the other components that are being consid-
ered. That is, neural activation in a ROI is the dependent variable
and the predicted neural activation from the model components are
the independent variables. Because the model components are
entered into the model together, the beta weight estimated for each
component controls for the other predictors. At the group level,
described below, the statistical comparison was performed indi-
vidually on each component using a t test. Here, the question is
whether each component contributes significantly to prediction at
the group level, allowing for inferences to be made about the
partial correlation between each model component and each region
of interest.

We performed group-level t tests (Bonferroni corrected) to
examine which of the three components from the reduced DF
model explained activation in different cortical regions across our
group of participants. We focused on connections that were posi-
tive. Note that negative connections were observed (i.e., same
node: lIFG, lIPS, lOCC, lSFG, lsIPS, rIFG, rMFG, rOCC, rsIPS;
CF: lTPJ, rTPJ; WM: alIPS, lIFG, lIPS, lsIPS, rIFG, rsIPS). In all
but one case (rMFG), a negative connection was paired with a
positive connection with another component. Thus, negative con-
nections could be explained by the inverse nature of different
components involved in same and different decisions, in which

case it is easier to interpret the positive connection weights. The
CF component explained significant activation in nine regions
(alIPS: t(14) � 4.85, p 
 .001; lIFG: t(14) � 5.65, p 
 .001; lIPS:
t(14) � 5.60, p 
 .001; lOCC: t(14) � 4.41, p 
 .001; lSFG:
t(14) � 4.67, p 
 .001; lsIPS: t(14) � 4.94, p 
 .001; rIFG:
t(14) � 5.56, p 
 .001; rOCC: t(14) � 4.32, p 
 .001; and rsIPS:
t(14) � 6.79, p 
 .001). Additionally, WM and the same node
explained activation in lTPJ, t(14) � 8.25, p 
 .001; t(14 � 7.83,
p 
 .001) and rTPJ, t(14) � 9.59, p 
 .001; t(14 � 7.89, p 

.001). Figure 10A shows the mapping of model components to
cortical regions. A first observation from this pattern of results is
that bilateral IPS is once again mapped to the contrast layer,
consistent with our first simulation experiment. In addition to IPS,
the CF regressor also captured significant variance in other regions
associated with the dorsal frontoparietal network including bilat-
eral OCC and IFG, as well as another brain region commonly
linked to an aspect of the ventral right frontoparietal network—
SFG (Corbetta & Shulman, 2002).

Given the striking presence of bilateral activation in the t test
results, we tested if the regression vectors were significantly dif-
ferent between paired regions across hemispheres. In our sample of
ROIs there were 11 such regions (e.g., left/right IPS, left/right IFG,
etc.). We tested for differences within-subject using the Savage-
Dickey (Rosa, Friston, & Penny, 2012) approximation of model
evidence and then examined consistency over the group (using
random effects model comparison). For all pairs, no log Bayes
Factors were decisively negative. This indicates that the regression
vectors were different. Thus, although both hemispheres may be
engaged in the same type of function (e.g., contrasting items with
the content of VWM), activation profiles between hemispheres
differ. This is consistent with data suggesting, for instance, that
IPS might be most sensitive to visual information in the contralat-
eral visual field (Gao et al., 2011; Robitaille, Grimault, & Jolicœur,
2009).

To assess the quality of the data fits between the DF regressors
and activation in these brain regions, we plotted the predicted data
from the model against the fMRI timecourses. We selected three
regions of interest—rTPJ that was mapped to the WM � Same
component across the group (Figure 10B), lIPS that was mapped to
the CF component across the group (Figure 10C), and a contrast
area—lMFG—that was not robustly mapped to any component
(Figure 10D). In each panel, we show an example plot from one
individual who “preferred” the DF model based on our MLM
analysis along with data from one individual who preferred the
accuracy categorical model. The annotation in each figure (see
green ovals) show time epochs where the preferred model showed
a better fit to the empirical data. For instance, in the top panel of
Figure 10B, there are several epochs where the DF model fit the
empirical data better; by contrast, the categorical model generally
shows a negative undershoot relative to the data. In the lower
panel, however, there is a run of trials where the categorical model
provides a better fit. Figure 10C shows comparable results, with
clear time epochs where the DF model (top panel) or categorical
model (lower panel) provides a better data fit. Finally, in Figure
10D, one can see two examples where neither model fits the
BOLD data particularly well.

To explore individual differences in further detail, we exam-
ined whether the connection values (i.e., � weights) between
model components and cortical regions were correlated (Spear-
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man’s correlation) with an individual’s WM performance as
indexed by the maximum value of Pashler’s K. Note that our
sample size of 16 may not be large enough to provide strong
evidence of brain-behavior relationships. Further, we tested
only positive � weights between regions and model components
(13 total comparisons). Using the Benjamin-Hochberg (Benja-
mini & Hochberg, 1995) correction procedure and a false-
discovery rate of .1 (given the exploratory nature of these
comparisons), we found that capacity was significantly corre-
lated with the connection weight between WM and lTPJ
(r � �0.66, p � .0055; Figure 10E). As is evident in the scatter
plot, higher capacity individuals show weaker � weights for the
WM component in lTPJ. Recall from the behavioral data in
Figure 8C that performance drops over set sizes, particularly in

the different condition; thus, higher capacity individuals (who
had the highest percent correct) show less of a same bias and
more selective responding on different trials. This is consistent
with the correlation in TPJ: higher capacity individuals show a
weaker same bias in TPJ (negative correlations between brain
activation and the WM regressor).

Assessing the quality of the mapping of model components
to cortical regions. One way to evaluate the mapping of model
components to cortical regions was shown in Figure 10, where
we highlighted both group-level data as well as data from
individual participants. While this is helpful in evaluating
model fits, in this final section we use a quantitative metric to
help understand what details of the data the DF and categorical
models are explaining.

Figure 10. Mapping of model components to regions of interest (ROIs). (A) Yellow spheres show ROIs that
corresponded to contrast field (CF) and red spheres show ROIs that corresponded to WM � “same” (WM,
working memory). (B–C) Time-course plots showing the blood oxygen level dependent (BOLD) response and
predicted time-courses from the Dynamic Field (DF) model and from the accuracy categorical model within
regions that were mapped by DF components. A participant is shown that preferred the DF model (P1) and a
participant that preferred the accuracy categorical model (P8). (D) The same time-courses and participants are
shown within a region that was not mapped by a DF component. (E) Scatter plot showing the correlation between
participant-specific weights of the working memory (WM) component from the DF model to rTPJ (temporo-
parietal junction) activation and individual capacity. See the online article for the color version of this figure.
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To quantitatively assess the quality of the fit for the DF model
relative to the categorical models, we examined the precision of
the different models. Precision was derived from the inverse co-
variance matrix for each model. Specifically, given the linear
Model Y � XW � E where the errors have covariance matrix C,
the corresponding precision matrix is � (the inverse of C). The
precision metric reflects the partial correlation between variables
independent of covariation with other variables (Varoquaux &
Craddock, 2013). We defined a diagonal version of the precision
matrix to get region by region precisions: � � diag(�) such that

�(r) is high if the model fit is good in region r, that is, if a lot of
unique variance is captured in this region. Improvements in model
precision were calculated as the relative percent improvement in
precision for the DF model relative to the different categorical
models. For instance, we can calculate the precision of the DF
model for subject 1 in left IPS, the precision of a categorical model
for subject 1 in left IPS, and then compute the relative percent
increase (or decrease) in precision for the DF model.

Figure 11A shows the average improvement in precision over
subjects for the 23 brain regions. The arrows below specific

Figure 11. Relative model precision. Average improvement in model precision for the Dynamic Field (DF)
model relative to the array of categorical models. Top panel shows relative improvement in model precision
within the 23 ROIs (regions of interest). Yellow (contrast field, CF) and red (working memory, WM � “same”)
arrows mark regions that were mapped to components of the DF model. Bottom panel shows relative
improvement in model precision by participant. Arrows indicate participants that preferred a categorical model
over the Dynamic Field (DF) model with four components. Gray arrows indicate participants that switched to
prefer the DF model when only three components of the DF model were included. See the online article for the
color version of this figure.
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regions highlight the mapping of model components to regions
shown in Figure 10A (yellow arrows � CF, red arrows � WM �
Same). As can be seen in the figure, regions mapped to specific DF
regressors in the group-level comparisons generally showed a
large relative increase in precision for the DF model (positive
values). Some regions such as rFEF showed a large average
change in precision even though this region was not mapped to a
particular DF component in the group-level t tests. Figure 11B
shows the average improvement in precision over regions split by
participants. The arrows below specific participants indicate the
participants that preferred a categorical model in the MLM anal-
ysis. These participants all have small changes in relative preci-
sion, indicating that the precision of the DF model was only
slightly higher than the precision of the categorical model. Con-
sidered together, then, the data in Figure 11 largely mirror the
group-level results that mapped DF components to ROIs as well as
the MLM results showing which models were preferred by which
subjects.

Critically, the precision for some regions for the categorical-
preferring participants showed higher precision for the categorical
model of interest. This can give us a sense of what the DF model
is failing to capture. Figure 12 shows two exemplary participants.
Figure 12A shows data from subject 1—a DF preferring partici-
pant with high relative precision in rIPS (relative precision �
1.7527), while Figure 12B shows data from subject 8—a categor-
ical preferring participant with a negative relative precision in this
same ROI, that is, higher precision for the change categorical
model (relative precision � �1.9862). Each panel shows the
BOLD data, the DF time series predictions, and the categorical
time series predictions with the data split by trial types. All time
traces were constructed by averaging the time series data from trial
onset (0s) through 10 s posttrial onset, where data were baselined
at 0 s.

As can be seen in Figure 12A, the DF-preferring participant
showed a large hemodynamic response in the SS2-correct condi-
tions as well as a large hemodynamic response on all SS6 trial

Figure 12. Activation and model prediction across trial-types within lIPS. Activation (solid) and model
predictions for the Dynamic Field (DF; dotted) and change categorical (dashed) models is plotted across
trial-types and different set sizes. Left graphs represent activation for a participant that preferred the DF model.
Right graphs represent activation for a participant that preferred the change categorical model. The bar graphs
show the average absolute difference between activation and model predictions within the 10 s time window.
CR � correct-rejection. See the online article for the color version of this figure.
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types (bottom row). This highlights how brain activity is modu-
lated by the memory load. Note that the SS4 condition had the
most trials; this appears to have reduced the magnitude of the
response (note the scale difference in the middle row). Comparing
the DF time series data with the categorical time series data, the
DF model data are closer to the empirical values for all SS2 trials,
for SS4-same-correct trials, and SS6-same trials (both correct and
incorrect), with mixed results in the other conditions. Thus, in this
region, the DF model is doing relatively well, with weaker per-
formance on high set size change trials. Note that the amplitude of
the model predictions are low in all cases reflecting the limited
degrees of freedom in the overall model (only three predictors).

In Figure 12B, we see a similar modulation in the HDR over SS,
although this participant shows a robust HDR across all SS2
conditions (top row). Looking at the relative accuracy of the DF
and categorical time series data, the top row shows mixed results
with one exception—the DF model is closer to the data on the
SS2-different-incorrect trials. The categorical model generally
fares better on the SS4 trials (middle row). SS6 is again mixed with
the categorical model closer to the BOLD data, particularly early
in the trial. Even though this region showed high precision for the
categorical model, this improved fit is subtle. We conclude, there-
fore, that the DF model is generally doing reasonably well—even
with categorical-preferring participants—and is not overtly failing
on a small subset of conditions.

Finally, we examined the differences between the observed
BOLD data measured from rIPS relative to the DF and categorical
models. Here, we focused on the accuracy and change categorical
models since these were the only categorical models preferred by
any participants. First, we computed the average absolute differ-
ence between the DF model and the BOLD signal and the cate-
gorical models and the BOLD signal to determine how much these
models deviated from the observed BOLD signal for each trial
type. Plotted in Figure 13 is the difference in deviation between the

two categorical models and the DF model averaged across partic-
ipants. This visualization provides a sense of which trial types the
DF model did well (where there are large positive values in Figure
13) and where the DF model did poorer (where there are negative
values in Figure 13). As can be seen, the DF model does very well
relative to these categorical models on incorrect trials at SS2 and
across trial types for SS6. Most notably, the DF model does the
worst on correct change trials at SS2. Note, however, the degree of
difference for this trial type is small relative to the degree of
difference on other trial types in which the DF model does better.

General Discussion

The central goal of the current article was to test whether a
neural dynamic model of visual working memory could directly
bridge between brain and behavior. We initially fit a model that
simulates behavioral and hemodynamic data simultaneously to
data from two fMRI studies that reported seemingly contradictory
findings. The model simulated results from both studies. Simulated
results from the model’s contrast layer most closely mirrored fMRI
data from IPS, suggesting that IPS plays more of a role in com-
parison and change detection than in the maintenance of items in
VWM. Moreover, the model explained why IPS fails to show an
asymptote in a long-delay paradigm—the longer-delay allows for
more subtle variations in the neural dynamics of the contrast layer
to be reflected in the hemodynamic response.

We then used a Bayesian MLM approach to test model predic-
tions against BOLD data from a set of ROIs to assess the fit of the
model’s predicted patterns of hemodynamic activation. This
method was used to shed light on the mechanisms that underlie
VWM and change detection performance with a special emphasis
on the neural processes that underlie errors in change detection.
Results showed that the model-based regressors explained more
variance in the BOLD data than standard task-based categorical

Figure 13. Relative differences between activation in lIPS and model predictions by trial-type. We first
calculated the absolute average difference between activation and model predictions for the Dynamic Field (DF)
model, accuracy categorical model, and change categorical model within a 10 s window for each trial type (as
visualized in Figure 12). Next, the difference for the DF model was subtracted from the difference of each
categorical model. Positive values, then, reflect instances where the categorical model deviated from observed
activation more so than the DF model. Negative values indicate instances in which the DF model deviated from
observed activation more so than the categorical model. CR � correct-rejection; FA � false alarm.
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regressors. Additional analyses showed that both the component
structure of the model and the details of neural activation on each
trial type mattered to the quality of the data fits. Evidence that the
trial types matter is important because the DF model offers a novel
account of why people make errors in change detection. In partic-
ular, the model predicts a false alarm when an item is not main-
tained in WM and a miss because of decision errors caused by
widespread suppression of the contrast layer. By contrast, previous
cognitive accounts hypothesized that misses occur when items are
not maintained in WM and false alarms reflect decision errors or
guessing (Cowan, 2001; Pashler, 1988). The fMRI data support the
DF account.

The model-based fMRI approach not only provided robust fits
to the BOLD data in specific ROIs, this approach also conferred
new understanding of the neural bases of VWM. In particular,
group-level analyses mapped model components to patterns of
activation in specific regions of the brain and this mapping offers
an explanation of the functional significance of this brain activity.
Although our results here are still correlational in nature, future
work could use methods such as TMS to more directly probe
model predictions that can push this explanation to the causal
level. Notably, once again, the contrast layer provided the best
account of data from IPS. This helps resolve ongoing debates in
the literature. Previous work has suggested IPS is a critical site for
VWM because this area shows an asymptote in the BOLD signal
at higher set sizes (Todd & Marois, 2004) while other work
suggests IPS plays an attentional role (Szczepanski, Pinsk, Doug-
las, Kastner, & Saalmann, 2013). Our results provide a new
account of these data suggesting that IPS is critically involved in
the comparison operation. This highlights how a model-based
fMRI approach can lead to an integrated account when current
experimental results have yielded contradictory findings.

More generally, the contrast field provided a robust account of
neural activation across 10 regions linked to a dorsal frontoparietal
network as well as key regions in a ventral right frontoparietal
network (Corbetta & Shulman, 2002). One critique of the model is
that it failed to make functional distinctions across these 10 ROIs.
We suspect this reflects the simplicity of the model tested here.
The model only had four components. While results show that
these components were sufficient to capture key aspects of the
behavioral and neural dynamics in the task, the model does not
specify all the processes that underlie participants’ performance.
For instance, in the current model, encoding and comparison both
happen in the CF layer. In a more recent model of VWM and
change detection (Schneegans, 2016; Schneegans, Spencer,
Schoner, Hwang, & Hollingworth, 2014), we have unpacked these
functions by including new cortical fields that implement encoding
within lower-level visual fields as well as attentional fields that
capture known shifts of attention that occur in change detection. If
we were to test this more articulated VWM model using the tools
developed here, it is possible that some of the CF ROIs like OCC
would now show an encoding function while other ROIs like SFG
would be mapped to an attentional function. Future work will be
needed to explore these possibilities. This work can directly use all
of the tools developed here.

Another key result in the present article was the mapping of the
WM and same functionalities to brain activation in bilateral TPJ.
The link between WM and TPJ is consistent with previous fMRI
studies (Todd et al., 2005). Moreover, we found significant corre-

lations between the WM and same � weights in rTPJ and individ-
ual differences in WM capacity. Although this suggests TPJ is a
central hub for VWM, one could once again critique the specificity
of the model predictions: shouldn’t the model reveal a neural site
for VWM that is distinct from activation predicted by the same
node? We suspect there are two key limitations on this front. First,
as noted above, the model is relatively simple. In our recent model
of VWM, for instance, we tackle how working memories for
features are bound to spatial positions to create an integrated
working memory for objects in a scene that is distributed across
multiple cortical fields. Moreover, working memory peaks in this
new model build sequentially as attention is shifted from item to
item. This leads to differences in the neural dynamics of working
memory through time that are not captured by the model used here
(that builds peaks in parallel). It is possible that this more articu-
lated model of VWM would help pull part the details of neural
processing in TPJ, potentially capturing data in other brain regions
as well that the current model failed to detect.

A second limitation of the present work was hinted at by our
simulations of data from Magen et al. (2009). Those simulations
show that short-delay change detection paradigms may provide
only limited information about the neural dynamics that underlie
VWM because subtle variations in the dynamics are not detected
in the slow hemodynamic response. We suspect this contributed to
the high collinearity of our model regressors that ultimately con-
tributed to the removal of the different regressor in our final model.
That is, the design of the task may not have been optimized to elicit
distinguishing patterns of activation from the model components.
One way to reduce collinearity in future model-based fMRI would
could be to vary the task. If, for instance, the model was put in a
variety of task settings, including both short-delay and long-delay
trials as well as variations in the memory load, the collinearity
would likely reduce. Indeed, one advantage of having a neural
process model is that the properties of the design matrix could be
optimized in advance by simulating the model directly. To explore
the relationship between model dynamics and hemodynamics in
more detail, we ran additional simulations in which we varied the
timing parameters of the canonical HRF function used to generate
hemodynamics from the simulated LFP (see online supplemental
materials figure). This illustrates how future work can use an
iterative process to not only inform interpretation of neural data
but to influence the parameters used in the model.

In summary, although there are limitations to our findings, the
integrative cognitive neuroscience approach used here opens up a
new way to assess how well a particular class of neural process
theories explain and predict functional brain data and behavioral
data. In this regard, the DF model presents a bridge between
cognitive and neural concepts that can shed new light on the
functional aspects of brain activation.

Relations Between the DF Model and Other
Theoretical Accounts

DFT provides a rich computational framework that generates
novel predictions not explained by other accounts focusing on slots
and resources (Bays et al., 2009; Bays & Husain, 2009; Brady &
Tenenbaum, 2013; Donkin et al., 2013; Kary et al., 2016; Rouder
et al., 2008b; Sims et al., 2012; Wilken & Ma, 2004). One novel
prediction previously reported using a DF model of VWM dem-
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onstrated enhanced change detection performance for items in
memory that are metrically similar (Johnson, Spencer, Luck, et al.,
2009). Other more recent models have also addressed metric
effects. For example, Sims, Jacobs, and Knill (2012) explain such
effects in terms of informational bits contained in the memory
array. Items that are more similar to one another contain fewer
informational bits, leading to items being encoded more precisely
and change detection performance is improved. The model re-
ported by Oberauer and Lin (2017) implement neural processes
that explain the benefits of have similarity between items in VWM.
In this case, the benefit arises from the partial overlap of repre-
sentations in VWM that mutually support one another. This con-
trasts with the explanation offered by the DNF model which
suggests that benefits in performance arising from item similarity
are because of to the sharpening of representations through shared
lateral inhibition (Johnson, Spencer, Luck, et al., 2009).

Here, we extended the DF model to also generate novel neural
predictions that no other behaviorally grounded model of VWM
has achieved. Beyond the capability to generate both behavioral
and neural predictions, the DF model of change detection is also
the only model that specifies the neural processes that underlie
comparison (Johnson et al., 2014). Swan and Wyble (2014) im-
plement a comparison process in their model that calculates the
difference between items held in VWM and items displayed in
the test array. This calculation results in a vector whose angle is the
degree of difference between a memory item and test display item
and whose length is the confidence that the model has about the
accuracy of that difference calculation. To make a “change” deci-
sion, the vector must be sufficiently different and sufficiently
confident. The response that the model generates is determined by
an algorithm that sets thresholds on these two values that linearly
scale with SS. Swan and Wyble (2014) also demonstrated how this
same process could generate color reproduction responses, sug-
gesting this a general process that can be used to both recollect
items from memory and compare the recollected value with an
available perceptual input. It should be noted that the DF model
engages in a similar comparison process, but generates active
neural responses based on nonlinear neural dynamics without the
need for a separate comparison algorithm.

More recent debates about whether VWM is best explained via
slots or resources have examined color reproduction responses.
Other variations of neural models discussed above have simulated
these type of data using neural units that bind features and spatial
locations (Oberauer & Lin, 2017; Swan & Wyble, 2014). In these
models, the spatial or featural cue in the task is used to recollect a
color or line orientation value from memory. Although the model
we presented here has not been used to generate color reproduction
responses, the model can be adapted in this direction (Johnson et
al., 2014). For example, Johnson et al. (n.d.) tested a novel pre-
diction of the DF model that similar items in VWM should be
repelled from one another during short-term delays and this should
be reflected in color reproduction estimates. Recent extensions of
the DF model have also been used to explain how object features
are bound into integrated object representations (Schoner & Spen-
cer, 2015).

Although there are ways in which DFT is unique, it also shares
considerable overlap with other theories. The neural mechanism of
self-sustaining activation is similar to the mechanism used in
models proposed by Edin and colleagues (Edin et al., 2009, 2007)

and Wang and colleagues (Compte et al., 2000). Additionally,
capacity limitations in the DF model arise from competitive dy-
namics instantiated through inhibition among active representa-
tions, similar to the neural model reported by Swan and Wyble
(2014). The model also overlaps with concepts from the slots and
resources frameworks. Specifically, the nonlinear nature of peak
formation bears similarity to the qualitative nature of slots. Relat-
edly, the width of peaks and their shifting over time leads to spread
of variance that is consistent with resource accounts. Moreover,
the gradual rise in activation for each peak is consistent with the
idea of the gradual accumulation of information over time in
resource models. It is notable that there are inconsistencies regard-
ing whether a slots or a resources account fit different data sets
(Donkin et al., 2013; Rouder et al., 2008; Sims, Jacobs, & Knill,
2012; van den Berg, Yoo, & Ma, 2017). Because the DF model has
aspects consistent with both approaches, the model may have the
flexibility needed to bridge these disparate findings in the literature
(for discussion, see Johnson et al., 2014).

The DNF model presented here is relatively simple, but has been
extensively used to examine VWM from childhood to older adults
(Costello & Buss, 2018; Johnson, Spencer, Luck, et al., 2009;
Simmering, 2016). Other applications have implemented a more
elaborated model that captures aspects of visual attention, saccade
planning, and spatial-transformations (Ross-Sheehy, Schneegans,
& Spencer, 2015; Schneegans, 2016; Schneegans et al., 2014).
These models incorporate a similar network to the model we
presented here, but embedded it within a broader architecture that
binds visual features to multiple different spatial frames of refer-
ence and performs spatial transformation across these reference
frames (Schneegans, 2016). For example, this DF model architec-
ture has been used to explain how VWM is updated across how
eye movements (Schneegans et al., 2014) and how spontaneous
exploration of an array of visual stimuli can build a representation
of a scene (Grieben et al., 2020). Other applications have explained
how change detection can occur if the same color occupies mul-
tiple spatial locations and how changes can be detected if two
colors swap locations as well as differences in performance across
these scenarios (Schneegans et al., 2016). Future work using the
model-based fMRI methods we describe here can explore how this
fuller architecture accounts for patterns of cortical activation.

Limitations and Future Directions

It is important to highlight several limitations of the integrative
cognitive neuroscience approach used here as well as future direc-
tions. One issue that will need to be addressed by future work is the
strong collinearity between regressors generated from the model.
The DF model is dominated by recurrent interactions meaning that
many properties of the pattern of activation, such as the timing or
duration, are likely to be shared across components. The approach
used here could be strengthened by designing tasks that are not
only optimized for fMRI but also optimized from the perspective
of the theory to be tested so that the regressors from a model are
as independent as possible.

Beyond such challenges, this work presents an important step
forward in understanding brain-behavior relationships that opens
up new avenues of future research. In particular, we are currently
using this method to determine if model-based fMRI can adjudi-
cate between competing neural process models to determine which
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provides a better explanation of brain data. If different models use
different neural mechanisms or processes to produce the same
pattern of behavior, can the Bayesian MLM and model-based
fMRI methods be used to determine which model provides a better
explanation of the functional brain data?

We are also exploring the transferability of models. One way to
achieve this might be to use one model to simulate two different
tasks. If cortical fields implemented by the model correspond
directly to processing in specific ROIs, we would expect the same
field to map onto the same ROI across tasks. However, it is also
possible that the function of specific cortical fields might be softly
assembled from interactions among different ROIs in the brain. In
this case, the function implemented by a cortical field might
correspond to different ROIs across different tasks. This explora-
tion can determine whether the architecture of a model reflects the
architecture of the brain, or if the functional mapping is more
complex.

Future work can also explore the relationship between the DF
model and the large body of work examining VWM processes with
EEG and ERP. Such efforts would complement the work presented
here by evaluating the fine-grained temporal predictions of the
model. The model is implemented with distinct neural processes
corresponding to excitatory and inhibitory interactions; thus, the
model is well-positioned to generate simulated voltage changes
and previous reports have provided initial comparisons between
DF model activation and electrophysiological measures (Spencer,
Barich, Goldberg, & Perone, 2012).

Lastly, we are also exploring the brain-behavior relationship
using other metrics of behavioral performance. In this project, we
focused on accuracy as a measure of performance; however, RT
can also be informative of the processes underlying VWM. Al-
though the model’s behavior unfolds in real-time and previous DF
models have been used to simulate RT as a target beahvior (Buss
et al., 2014; Erlhagen & Schöner, 2002), the current model was not
optimized to fit patterns of RT, nor was the task optimized to
reveal differences in RTs across memory loads. Future work can
use this behavioral metric to further constrain model parameters
and potentially reveal novel aspects of the neural dynamics of
VWM.

In conclusion, the DF account of VWM and change detection
links behavioral and neuroimaging data in a new—and direct—
way. We showed how a model that was initially constrained by
behavioral data predicted patterns of fMRI data from a novel
change detection paradigm, outperforming standard methods of
analysis. The predicted and experimentally confirmed neural sig-
natures of both correct and incorrect performance shed new light
on the functional role of IPS, as well as lending support to the role
of the TPJ in VWM maintenance. Critically, these functional
neural signatures provide support for the neural dynamic account,
contrasting with classic accounts of the origin of errors in change
detection upon which more recent models are based. The model-
based fMRI approach also raises new questions. For instance, how
specific is the mapping between the different activation fields in
the DF architecture and cortical sites in the brain? Integrating
multiple different tasks within a single model and a single neural
data set may be a way to address such questions about the mapping
of brain function to neural architecture.
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