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a b s t r a c t 

In this study we used functional near-infrared spectroscopy (fNIRS) to investigate neural responses in normal- 

hearing adults as a function of speech recognition accuracy, intelligibility of the speech stimulus, and the manner 

in which speech is distorted. Participants listened to sentences and reported aloud what they heard. Speech qual- 

ity was distorted artificially by vocoding (simulated cochlear implant speech) or naturally by adding background 

noise. Each type of distortion included high and low-intelligibility conditions. Sentences in quiet were used as 

baseline comparison. fNIRS data were analyzed using a newly developed image reconstruction approach. First, 

elevated cortical responses in the middle temporal gyrus (MTG) and middle frontal gyrus (MFG) were associated 

with speech recognition during the low-intelligibility conditions. Second, activation in the MTG was associated 

with recognition of vocoded speech with low intelligibility, whereas MFG activity was largely driven by recogni- 

tion of speech in background noise, suggesting that the cortical response varies as a function of distortion type. 

Lastly, an accuracy effect in the MFG demonstrated significantly higher activation during correct perception rel- 

ative to incorrect perception of speech. These results suggest that normal-hearing adults (i.e., untrained listeners 

of vocoded stimuli) do not exploit the same attentional mechanisms of the frontal cortex used to resolve naturally 

degraded speech and may instead rely on segmental and phonetic analyses in the temporal lobe to discriminate 

vocoded speech. 
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. Introduction 

Despite myriad sources of distraction in daily life, listeners’ per-

eption of speech demonstrates surprising resilience. The robustness of

peech perception owes to the neural redundancy within the auditory

ystem, whereby subcortical neural firing strongly correlates with stimu-

us patterns and becomes increasingly discerning to specific feature com-

inations of speech at the level of the cortex ( Gervain and Geffen, 2019 ;

chnupp, 2006 ). Likewise, comprehension of speech generally follows a

ierarchy of processing such that acoustic sensory analyses begin at the

emporal lobe, and higher level, attentional mechanisms of the frontal

ortex are recruited to resolve more complicated speech information

 Davis and Johnsrude, 2003 ; Friederici, 2011 ). When degraded listen-

ng conditions complicate speech understanding, additional brain re-

ions become activated beyond those recruited during favorable listen-
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ng conditions ( Defenderfer et al., 2017 ; Du et al., 2014 ; Mattys et al.,

012 ). 

The neural response can vary based on the manner in which speech

s compromised. For example, brain activity in some regions may exhibit

 diminished response as intelligibility is reduced ( Billings et al., 2009 ),

hile in other regions, a heightened response suggests specific neural

echanisms are activated to optimize speech understanding ( Davis and

ohnsrude, 2003 ; Davis et al., 2011 ). Neural processing of common ex-

ernal distortions (e.g.; multi-talker babble, background noise) have ap-

eared in frontal regions, whereas speaker-related distortion (i.e. ac-

ented speech, voice quality) appear in temporal regions ( Adank et al.,

012 ; Davis and Johnsrude, 2003 ; Kozou et al., 2005 ). Many studies

ttribute higher-order linguistic processes such as switching attention,

nference-making, and response selection from competing stimuli to the

rontal cortex ( Friederici et al., 2003 ; Obleser et al., 2007 ; Rodd et al.,
 (S. Forbes), sobanawartiny.wijeakumar@nottingham.ac.uk (S. Wijeakumar), 

.T. Buss). 
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005 ). Temporal regions are recruited to perform auditory analyses and

arly speech decoding processes ( Hickok and Poeppel, 2007 ). Thus, the

peech perception network uses multiple mechanisms to enhance per-

eption in unfavorable listening conditions. 

Cochlear implant (CI) users face unique challenges when listening to

peech amid background noise due to the compounding effects of having

 compromised auditory system in addition to dealing with the inher-

nt signal distortion of the processor ( Macherey and Carlyon, 2014 ).

espite widespread success with restoring access to speech, the use of

Is continues to exhibit huge variability in post-implantation outcomes

 Blamey et al., 2013 ; Lazard et al., 2012 ). The CI speech processor in-

erently degrades all auditory input by stripping away the fine spec-

ral properties of the speech signal. Post-lingually deafened individuals,

ho at one point had normal hearing, commonly report that listening

hrough the CI does not resemble their auditory memories prior to their

earing loss ( Boëx et al., 2006 ; James et al., 2001 ). Thus, there is a pe-

iod of neural discordance wherein listeners are adapting to the altered

nput and re-learning the gamut of sounds in daily life (i.e., remapping

eural pathways). In some listeners who continue to struggle using the

I, the attentional mechanisms within the neural systems of speech per-

eption may not be flexible enough to enhance processing of speech

hen attempting to listen amid background noise. 

CI speech simulations have long been used to examine how the NH

uditory system treats stimuli that lack the perceptual properties it oth-

rwise is accustomed to processing ( Goupell et al., 2020 ; Pals et al.,

012 ; Sheldon et al., 2008 ). The process of vocoding is an artificial ma-

ipulation that results in speech stimuli that are similar to the output

f speech processors worn by CI listeners. Fine spectral information is

tripped from the speech input while preserving temporal properties of

he speech envelope ( Shannon et al., 1995 ), effectively removing the

roperties that make speech sound natural. The use of vocoded speech

ith NH listeners allows us to simulate variability of speech recogni-

ion performance observed in the CI population and also examine the

mpact of spectral degradation on the neural response. Prior to losing

heir hearing, post-lingually deafened CI recipients had normal audi-

ory function, indicating that the neural infrastructure associated with

ypical hearing function was, at one point, intact. This may help ex-

lain why speech-related activity in post-lingually deafened CI users

esemble that of NH listeners ( Hirano et al., 2000 ; Olds et al., 2016 ;

etersen et al., 2013 ). Additionally, experienced CI users have demon-

trated use of speech perception mechanisms also employed by NH lis-

eners ( Moberly et al., 2014 ; Moberly et al., 2016 ). It’s important to

ote that use of vocoded stimuli with NH subjects is not expected to

imic how the neural system of CI listeners process auditory stimuli, as

here are fundamental differences between the peripheral/central audi-

ory systems of NH and CI users (L. Chen et al., 2016 ; Sandmann et al.,

015 ; Zhou et al., 2018 ). In the present study, CI speech simulations

re expected to influence neural and behavioral responses in NH listen-

rs, revealing effects unique to the spectral degradation of a CI. Thus,

n the current project we assessed neural activity of NH adults to better

nderstand how the frontotemporal response to CI simulations (i.e., ar-

ificial distortion) differs from processing speech in noise (i.e., natural

istortion). 

Frontotemporal activation has been cited in a number of studies that

ave manipulated speech intelligibility with vocoding. Temporal lobe

ngagement, specifically in the superior temporal gyrus (STG) and/or

uperior temporal sulcus (STS) ( Giraud et al., 2004 ; Pollonini et al.,

014 ), underscore neural sensitivity to temporal speech features pre-

erved in the vocoded speech. Other studies have found neural cor-

elations with intelligibility along the STG and effort-related process-

ng associated with prefrontal cortex (PFC) activity ( Davis and John-

rude, 2003 ; Eisner et al., 2010 ; Lawrence et al., 2018 ). PFC activation

as also been observed during comprehension of vocoded speech stim-

li, relative to speech in quiet ( Hervais-Adelman et al., 2012 ). Simi-

arly, results of an fMRI examination, which were later replicated us-

ng fNIRS ( Wijayasiri et al., 2017 ), revealed significant PFC activation,
2 
pecifically in the inferior frontal gyrus (IFG), while listeners attended to

ocoded speech, relative to speech in quiet. Importantly, simply hear-

ng the vocoded stimuli was not associated with IFG activity. Rather,

ctivation depended on whether listeners were attending to the speech

 Wild et al., 2012 ). These studies, however, used other attentional ma-

ipulations in the context of speech perception suggesting that PFC ac-

ivity is not specific to processing vocoded speech and may be associ-

ted with the higher-level processes such as inhibition ( Hazeltine et al.,

000 ), performance monitoring ( Ridderinkhof et al., 2004 ), working

emory ( Braver et al., 1997 ; J. D. Cohen et al., 1994 ), and attention

 Godefroy and Rousseaux, 1996 ). Even so, a large body of evidence in-

icates that PFC activation plays an important role in optimizing speech

ecognition during difficult listening conditions ( Demb et al., 1995 ;

bleser and Kotz, 2010 ; Poldrack et al., 2001 ; Wong et al., 2008 ). Thus,

he specific role of PFC regions in processing vocoded speech remains

o be demonstrated. 

One way to better understand the neural mechanisms that give rise

o speech perception is to examine the differences in cortical activa-

ion related to correct and incorrect speech recognition. The few neu-

oimaging studies that have made this direct comparison have reported

levated activation in different frontotemporal regions to both accurate

 Dimitrijevic et al., 2019 ; Lawrence et al., 2018 ) and inaccurate percep-

ion ( Vaden et al., 2013 ). Additionally, a recent fNIRS examination of

emporal lobe activity in NH adults reported increased temporal cortex

ctivation during accurate recognition of sentences in noise when com-

ared to incorrect trials, highly intelligible vocoded speech stimuli, and

peech-in-quiet stimuli ( Defenderfer et al., 2017 ). What did not emerge

rom this study were differences in activation between natural speech

nd vocoded speech stimuli. Notably, the interpretation of these results

as limited, first, by the regions measured, as the fNIRS probe only cov-

red bilateral temporal lobes. Additionally, the vocoded sentences were

ighly intelligible and participants achieved near perfect performance

n this condition. Incorporation of a vocoded speech condition with low

ntelligibility could reveal important cortical differences associated with

ow the brain optimizes recognition of degraded speech. 

.1. Current study 

The aim of this study was to investigate the effects that simulated CI

peech and speech in background noise have on the brain response. We

ecorded cortical activity using functional near-infrared spectroscopy

fNIRS), a non-invasive, portable, cost-effective imaging tool that uti-

izes the interaction between hemoglobin (Hb) and near infrared light

o estimate cortical activation ( Villringer et al., 1993 ). Unlike functional

agnetic resonance imaging (fMRI), fNIRS generates very little noise

nd is compatible with hearing aid devices such as cochlear implants

CI) or hearing aids ( Lawler et al., 2015 ; Saliba et al., 2016 ) making

t an ideal tool for studying the neural basis of speech perception pro-

esses. 

We address the limitations of previous research in two ways. First,

e designed an fNIRS probe to cover left frontal and temporal re-

ions and conducted volumetric analyses which can provide better

lignment of data across participants and localize activation to corti-

al regions. This analysis method has been validated through compar-

son with concurrently-measured fMRI data ( Eggebrecht et al., 2012 ;

ijeakumar et al., 2017 ) and has been applied in studies using only

NIRS ( Forbes et al., 2021 ; Wijeakumar et al., 2019 ). This method will

llow us to assess the degree to which these compensatory mechanisms

ctivate across temporal and frontal cortices, and further, determine

ow they might differ during recognition of artificial versus natural

orms of distorted speech. Second, many studies that use CI speech sim-

lations parametrically vary speech intelligibility by altering the num-

er of frequency channels ( Hervais-Adelman et al., 2012 ; Miles et al.,

017 ; Obleser et al., 2008 ). Instead, we sought to create a realistic, low-

ntelligibility vocoded condition in which sentences amid background

oise were vocoded. These stimuli are likely better approximations of
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 CI user’s daily listening experience and will allow us to investigate

he neural mechanisms that are engaged when attention is needed to

ocus on speech lacking the fine spectral features usually characteristic

f natural speech. 

We used an event-related design to compare cortical activity asso-

iated with accuracy (correct, incorrect), intelligibility (high, low), and

ype of speech distortion (background noise, vocoding). The task in-

luded high- and low- intelligibility conditions for both vocoded speech

artificial distortion) and speech in background noise (natural distor-

ion), using sentences in quiet for comparison. Intelligibility (as mea-

ured by averaged speech recognition score) was approximately equiva-

ent between degraded speech types. However, acoustic composition be-

ween speech-shaped background noise and vocoded stimuli vary drasti-

ally. Unlike vocoding speech, incorporating background noise does not

liminate any component of the speech signal. Instead, the added noise

cts as an energetic masker, blending acoustic signals and decreasing

ntelligibility of salient acoustic features of speech ( Mattys et al., 2009 ).

t is likely that neural mechanisms associated with extracting meaning

rom speech may differ according to the manner in which the speech is

istorted. Thus, while behavioral performance is equal between these

wo speech conditions, we expect variations in the way the cortex re-

olves each form of distortion. For instance, we expect the auditory sys-

ems of NH listeners to be more familiar (and thus better prepared) to

rocess speech in noise relative to vocoded speech. Top-down atten-

ional mechanisms associated with activity in frontal regions should be

vailable to deploy during speech-in-noise conditions but may not be

exible enough to optimize recognition of simulated CI speech. In typ-

cal, noisy settings, CI listeners face a number of complicating factors.

irst, ambient noise adds auditory input that is irrelevant to the targeted

peech signal. Second, speech recognition is further compounded by the

nherent signal distortion from the speech processor. Therefore, the low-

ntelligibility vocoded condition was created to reflect an ecologically-

alid listening environment experienced by CI users by adding low level

ackground noise to sentences in quiet prior to applying the vocoding

rocess (detailed in section 2.2 ). The neural responses to these vocoded

timuli might help us better understand the cortical mechanisms used

y post-lingually deafened CI listeners to resolve spectrally-degraded

peech. By studying the interaction of these two factors in this unique

ay, we are hoping to increase our understanding of the mechanisms

ediating accurate speech perception. Such an understanding may help

uide future work to improve speech perception after CI implantation. 

. Methods and analyses 

.1. Participants 

The Institutional Review Board of the University of Tennessee

noxville approved the experimental protocol and plan of research.

ased on our previous fNIRS study ( Defenderfer et al., 2017 ), power

nalyses of a two-factor, within-subjects design suggests a minimum

f 38 subjects to achieve a power of 80% with an effect size of 0.14.

hirty-nine adults (mean age 24.76 years, 21 females) participated in

he study. All participants completed a consent form, handedness ques-

ionnaire, and demographic inventory prior to the experiment. Partici-

ants were between the ages of 18 to 30 years old, right-handed, native

nglish-speakers, and passed a hearing screening with auditory thresh-

lds better than or equal to 25 dB HL at 500, 1000, 2000 and 4000 Hz.

articipants received monetary compensation for their time. It is pos-

ible that the NIR wavelengths of interest are susceptible to absorption

haracteristics of hair color and density; however, subjects were not se-

ected with regard to hair or skin color ( Strangman et al., 2002 ). One

articipant was later discovered to have had a brain tumor which was

emoved 2 years prior to the experimental session; this dataset was ex-

luded from the group analyses. The study results are based on 38 adults
20 females). 

3 
.2. Speech material 

Stimuli were created using sentences from the Hearing in Noise Test

HINT) ( Nilsson et al., 1994 ), which are male-spoken and phonemically-

alanced. A total of five listening conditions were created using Adobe

udition (v. 7) and Audacity ( Audacity Team, 2017 ) software. Speech

n quiet (SQ) was used as a baseline comparison to the distorted con-

itions. Two of the conditions were designed with high intelligibility

H) where ceiling performance was expected: vocoded speech (HV) and

peech in low-level noise (HN). Two conditions were designed to be of

ow intelligibility (L) where performance was expected to be 50% on

verage across subjects: speech in high-level noise (LN) and sentences

ith low-level noise that were then vocoded (LV). Pilot data were col-

ected from a sample of 40 NH individuals to determine the appropriate

ignal-to-noise ratios (SNRs) that would yield an average score of 50%

orrect for each low-intelligibility condition (these individuals were not

articipants in the current study). 

HINT sentences were digitally isolated from their original lists and

ampled at 44,100 Hz into 3-second tracks. For noise manipulations, a

-second clip of the original HINT speech-shaped noise track was mixed

ith the isolated sentences. This noise is composed of the spectral com-

onents of all HINT sentences which are converted into a broadband

pectrum identical to that of the HINT corpus. The measured total RMS

alue of each sentence utterance was modified to reflect target SNRs

uch that the level of the utterance changed, while the level of noise re-

ained constant. This way, participants would not perceive noticeable

hanges in noise levels from trial to trial. Sentences were mixed with

oise to reflect a + 10 dB SNR for the HN condition and -4 dB SNR for

he LN condition. 

Speech stimuli for the HV and LV conditions were vocoded with

ngelSim 

TM ( TigerCIS ) Cochlear Implant and Hearing Loss Simulator

oftware. The HV condition contained 8-channel vocoded sentences.

solated sentence files were band-passed into eight frequency channels,

nd temporal envelopes were extracted in each frequency band by half-

ectification and low-pass filtering. The extracted envelope was used to

odulate wide-band white noise and lastly, filtered with a bandpass

lter. Trials for the LV condition received one additional step prior to

ocoding. Sentences were first mixed with the HINT noise track at a + 7

B SNR, and were then 8-channel vocoded to simulate a realistic listen-

ng condition that CI recipients experience in a day-to-day environment.

Condition information is summarized in Fig. 1 A. The presentation

evel was determined by measuring the full acoustic stimulus of 5 sen-

ences from each listening condition with a sound level meter and 2

c coupler (standard ANSI coupler to approximate residual ear canal

olume while wearing inserts), equaling approximately 65 dB SPL on

verage. SQ, HV, and HN conditions contained 30 sentence trials each.

N and LV contained 40 sentence trials each. Average performance in

he low-intelligibility conditions were targeted at 50% resulting in ap-

roximately 20 correct trials and 20 incorrect trials per condition. Rel-

tive to the high-intelligibility conditions, the number of trials for the

ow-intelligibility conditions were reduced to avoid participant fatigue,

hile still maintaining a sufficient number of trials for statistical com-

arison. Participants received familiarization trials at the beginning of

ach block of trials for a condition (three for high-intelligibility condi-

ions, six for low-intelligibility conditions). While NH participants are

nfamiliar with vocoded stimuli, the familiarization trials were not in-

ended to train performance with vocoded stimuli, rather orient partic-

pants to the nature of the stimuli. These trials were not included in the

nalyses. In total, there were 170 trials per participant. 

.3. Procedure 

The current study implemented a speech recognition task

n an event-related experimental design previously reported

 Defenderfer et al., 2017 ). A research assistant placed the insert

arphones and positioned the custom-made NIRS headband over

http://www.tigerspeech.com/angelsim/angelsim_about.html
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Fig. 1. A. Abbreviations and descriptions of task conditions. B. Custom headpiece positioned on representative participant (left). Sensitivity profile and projection 

of fNIRS probes onto cortical surface (right). Red and blue dots represent source lights and detectors, respectively. NIRS channels are labeled with white numbers 

(channel 5 is the short separation channel). The color scale indicates relative sensitivity to neural activation on a logarithmic scale. 
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esignated regions of interest. The headpiece was adjusted to meet

he participant’s comfort level while also remaining adequately secure

o ensure good contact between the optodes and scalp. Next, spatial

oordinates for five scalp landmarks (right and left preauricular points,

ertex (CZ), nasion, and inion) and the position of every source light

nd detector on each participant’s head were recorded using Polhemus

igitizing system. 

Condition blocks were randomized to rule out any effect of order,

nd all sentence trials of one condition were presented together. Par-

icipants received breaks at the end of each condition block. In an at-

empt to reduce the introduction of signal artifacts, participants were

sked to sit still and reserve large body movements for breaks between

onditions. The following description of the trial paradigm can be seen

n Fig. 1 from Defenderfer et al. (2017) : Each trial began with a silent

eriod (500ms) prior to onset of sentence presentation (3000ms), fol-

owed by a second silent period (jittered at 500, 1500, or 2000ms in a

:1:1 ratio, respectively). A click sound (250ms) was played after each

rial, cueing the participant to repeat the sentence during the repetition

hase (3000ms). This is followed by another silent pause (jittered at

000, 1500 or 2000 ms in a 2:1:1 ratio, respectively) before the begin-

ing of the next trial. Timing of trial presentation was jittered to avoid

ollinearity between trial columns in the design matrix ( Dale, 1999 ).

ittering reduces the occurrence of a deterministic pattern in the neu-

al response and allows us to use deconvolution methods to parse

apid event-related activity from its associated trial type ( Aarabi et al.,

017 ). 

Participants were asked to listen to each sentence, wait for a “click, ”

nd then repeat as much of the sentence out loud to the best of their

bilities. Participants were encouraged to guess any part of the sentence,

nd if not able to provide a response at all, they were told to say “I don’t

now. ” Instructions were also displayed on a computer monitor prior to

he beginning of each listening condition, and each block of trials began

t the participant’s discretion by pressing the spacebar on the keyboard.

erformance was scored as a percentage of correct trials within each

ondition. Using the HINT scoring criteria, a correct response was de-

ned by correctly repeating the entire HINT sentence (allowing ‘article’

xceptions). Participants did not receive feedback on performance ac-

uracy. Sessions were audio-recorded and later scored by two research

ssistants. 

.4. fNIRS Methods 

.4.1. Hardware and probe design 

The original data files used in the current study comply with the re-

uirements of the institute, comply with IRB guidelines, and are avail-
4 
ble in the public domain ( http://dx.doi.org/10.17632/4cjgvyg5p2.1 ).

his study was conducted using a Techen continuous-wave 7 (CW7)

IRS system including 8 detectors and 4 source lights. The Techen CW7

imultaneously measures hemodynamic changes using 690 and 830 nm

avelengths. The experimental task was implemented in E-Prime (v.

.0) and fNIRS data was synchronized to stimulus presentation with

ime-stamps at trial onsets. Given the limited number of source lights

nd detectors, we opted to focus the probe configuration over the left

emisphere owing to its dominant role in speech and language process-

ng ( Belin et al., 1998 ; Hickok and Poeppel, 2007 ). A headpiece was

ustom-made to record fNIRS data from left frontal and temporal cor-

ices. The design accommodated a range of head sizes and comprised

f thirteen 30 mm long channels and one 10 mm short separation (SS)

hannel ( Fig. 1 B). Channels were conFig.d to record data over T3 (STG),

3 and F7 (IFG) scalp locations of the 10:20 Electrode System. Incorpo-

ating short-distance channels has been shown to reasonably identify

xtracerebral hemodynamic changes ( Gagnon et al., 2011 ; Sato et al.,

016 ). Due to the limited number of available sources/detectors, only

ne SS channel was included ( Fig. 1 B, channel 5). Noise within the

ead volume measured with fNIRS is spatially inhomogeneous across

he scalp ( Huppert, 2016 ). Therefore, it is possible that the single SS

hannel did not effectively remove artifact caused by superficial blood

ow on the more distant long channels if the scalp blood flow patterns

ere different than what was measured on the SS channel. In order to

ptimize the effect of the SS channel, it was positioned over the tem-

oral muscle and near the center of the probe design to target the most

obust source of noise and capture superficial artifact associated with

emporal muscle activity during vocalization ( Schecklmann et al., 2017 ;

cholkmann et al., 2013 ). 

.4.2. Pre-processing of NIRS data and creation of light model for 

euroDOT 

fNIRS data were analyzed in MATLAB with functions provided in

OMER2 ( Huppert et al., 2009 ) and NeuroDOT ( Eggebrecht and Cul-

er, 2019 ). First, data were pre-processed in HOMER2. The raw signal

ntensity was de-meaned and converted to an optical intensity measure.

ue to the potential motion/muscle artifact associated with speaking

asks, a more liberal correction approach was selected to counteract sig-

al contamination. First we applied the hybrid method of combining

pline interpolation and Savitzky-Golay filtering techniques (p = 0.99,

rame size = 10s) to correct large spikes and baseline shifts in the

ata ( Jahani et al., 2018 ; Savitzky and Golay, 1964 ; Scholkmann, Ger-

er, Wolf and Wolf, 2013 ; Scholkmann et al., 2010 ). Second, we used the

odified wavelet-filtering technique (implemented with Homer2 hmr-

otionCorrectWavelet) ( Molavi and Dumont, 2012 ) using an IQR thresh-

http://dx.doi.org/10.17632/4cjgvyg5p2.1
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Fig. 2. A. Line plots of channel-wise time series data for all conditions from a representative frontal channel (channel 3, top left) and a representative temporal 

channel (channel 13, top right). Examples of non-canonical/inverted responses for conditions from the Intelligibility ANOVA are plotted from channel 6 (bottom 

left) and channel 9 (bottom right). The approximate location of each channel in relation to the probe configuration are denoted by white asterisks within the insets 

in the upper right hand corner of each plot. See Fig. 1 A for condition abbreviations. Error bars represent the standard error of the mean. B. Histogram plotting the 

frequency of correlations between channel data and image-based data. 
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ld of 0.72. This method has been shown to effectively diminish motion

rtifact during experiments with speech tasks ( Brigadoi et al., 2014 ).

hannel-wise time series data at this stage of the processing are plotted

rom representative channels in the frontal and temporal lobe in Fig. 2 A.

The first step before reconstructing the fNIRS data into image space

s to prepare the atlas that will be used to create a structural image that

s aligned to the digitized anatomical landmarks for each participant.

ere, we used Colin’s atlas. Next, a light model was created using the

igitized spatial coordinates for the source and detector positions. Us-

ng AtlasViewer , photon migration simulations were performed to cre-

te sensitivity profiles by estimating the path of light for each chan-

el using parameters for absorption and scattering coefficients for the

calp, CSF, gray and white matter ( Bevilacqua et al., 1999 ; Custo et al.,

006 ). Sensitivity profiles were created with Monte-Carlo simulations

f 10,000,000 photons for each channel ( Fang and Boas, 2009 ). An ex-

mple of the combined sensitivity profile for the entire probe is shown

n a representative head volume in Fig. 1 B. Sensitivity profiles for each

hannel were thresholded at 0.0001 and combined together to create a

ask for each participant that reflected the cortical volume from which

ll NIRS channels were recording. A group mask was then created which

ncluded voxels in which at least 75% of participants contributed data.

ince the fNIRS probe spanned lobes that were discontinuous in tissue,

his group mask was divided into two separate masks corresponding to

rontal and temporal lobes which allowed for activation in the two lobes

o be analyzed separately. 

.4.3. Image reconstruction with NeuroDOT 

NIRS data were bandpass filtered to retain frequencies between 0.02

z and 0.5 Hz, removing high and low frequency noise that are often

otion-based. Systemic physiology (pulse and respiration) was then re-

oved by regressing the short separation data from the other channels.

inally, data were converted to hemoglobin concentration values using

 differential path-length factor of 6 for both wavelengths. Volumetric

imeseries data were constructed from these cleaned channel data fol-

owing the procedure outlined by Forbes et al. (2021) . 

Image reconstruction in NeuroDOT integrates the simulated light

odel created in AtlasViewer with the pre-processed channel-space data.

easurements from the sensitivity profiles for each source-detector pair

re organized into a 2-D matrix (measurements X voxels). NIRS files are

onverted to NeuroDOT format, in which SD information (source, de-

ector, wavelength, separation) and stimulus paradigm timing informa-

ion are extracted into reformatted variables. Channel data, originally

ampled at 25 Hz, was down-sampled to 10 Hz to mitigate costly com-
5 
utational demands. A challenge unique to optical imaging is proper

stimation of near infrared light diffusion in biological tissue, as im-

ge reconstruction of the NIRS data is subject to rounding errors and

ay lead to an under-determined solution ( Calvetti et al., 2000 ). There-

ore, the Moore-Penrose generalized inverse ( Eggebrecht et al., 2014 ;

ikhonov, 1963 ; Wheelock et al., 2019 ) is used to invert the sensitivity

atrix for each wavelength using a Tikhonov regularization parameter

f 𝜆1 = 0.01 and spatially variant parameter of 𝜆2 = 0.01. Optical data are

hen reconstructed into the voxelated space for each chromophore (Neu-

oDOT function reconstruct_img ). Relative changes in HbO and HbR are

btained each wavelength’s respective absorption and extinction coeffi-

ients (NeuroDOT function spectroscopy_img ) ( Bluestone et al., 2001 ). 

After reconstruction, general linear modeling is used to estimate the

mplitude of HbO and HbR for each condition and for each subject

cross the measured voxels.We used an HRF derived from diffuse opti-

al tomography (DOT) data for both HbO and HbR responses because it

as shown to be a better fit than HRFs derived from fMRI ( Forbes et al.,

021 ; Hassanpour et al., 2014 ). The GLM comprised of eight regres-

ors, including (1) speech in quiet (SQ), (2) speech in noise with high-

ntelligibility (HN), (3) vocoded speech with high-intelligibility (HV),

4) correct speech in noise with low-intelligibility (LN c ), (5) correct

ocoded speech with low-intelligibility (LV c ), (6) incorrect speech in

oise with low-intelligibility (LN i ), (7) incorrect vocoded speech with

ow-intelligibility (LV i ), and (8) time stamps associated with the vocal

esponses after each trial. Each event was modelled with a 3 second

ox-car function (corresponding to the duration of the sentence stimuli)

hat was convolved with a hemodynamic response function defined as a

ixture of gamma functions (created using spm_Gpdf ; h 1 = 4, l 1 = 0.0625;

 2 = 12, l 2 = 0.0625). 

.4.4. Validating image-reconstruction of fNIRS data 

Image-based analyses of fNIRS data is a method that continues to

e developed. Therefore, it is important to check for consistency after

he image reconstruction process. Following the procedures described in

orbes et al. (2021) (see section 6.2), we correlated the channel-based

ime series data with the image-reconstructed time series for all subjects

n this study. The mean amplitude of HbO and HbR were extracted from

 2 cm size sphere of voxels around the voxel with maximum sensitiv-

ty for each channel. Correlations were carried out between the average

mage-reconstructed time series and the channel-wise time series. In to-

al, 988 correlations were performed for 38 subjects, 13 channels each

channel 5, the short separation channel, was excluded in this analy-

is). The histogram in Fig. 2 B plots frequency of correlational values
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Table 1 

Breakdown of factors and levels for each repeated-measures ANOVA. The ANOVAs detailed in A and B test the effects of each type of distortion 

(speech-shaped background noise and vocoding, respectively) on the baseline response to speech in quiet. ANOVAs detailed in C and D examined 

how distortion type interacted with intelligibility ( C ) and trial accuracy ( D ), respectively. Subscripts c and i indicate correct or incorrect trials. HbO, 

oxy-hemoglobin; HbR, deoxy-hemoglobin. 
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a  
etween channel and image-based time series data. Of the 988 corre-

ations, 922 were greater than 0.25 (minimal acceptable threshold re-

orted in Forbes et al., 2021 ). Within this subset which exceeded the

riterion, the mean r value was 0.7. Thus, from these analyses we can

onclude that the image-based reconstruction was an accurate repro-

uction of the channel-base data. 

.5. Statistical analyses 

.5.1. Analyses of variance between conditions 

Group analyses were carried out using 3dMVM in AFNI (G.

hen et al., 2014 ). A summary of each statistical test can be re-

iewed in Table 1 . fNIRS estimates cortical activation by tracking

hanges in the hemodynamic response that follows neural activity

 Steinbrink et al., 2006 ). The process of neurovascular coupling suggests

hat neural activation results in a net increase of oxygenated hemoglobin

HbO) and concurrent net decrease of deoxygenated hemoglobin (HbR)

 Buxton et al., 1998 ). For this reason, we included hemoglobin as a fac-

or with measures of HbO and HbR. The first two repeated-measures

NOVAS examines how noise ( Table 1 A) and the process of vocoding

 Table 1 B) affect the neural response relative to the baseline response

o speech in quiet. Table 1 C details an ANOVA that examines whether

ortical activity interacts with distortion type (noise versus vocoding)

nd/or intelligibility (high versus low). The ANOVA in Table 1 D exam-

nes whether trial accuracy has an effect on the cortical response and

hether this interacts with distortion type. 

Unlike fMRI data in which noise is relatively uniform within the

rain volume, noise in fNIRS data is heteroscedastic such that 1) tem-

oral noise artifacts (i.e., motion, speaking) cause the artifact distribu-

ion to be heavy-tailed (yielding non-normal distribution) and 2) spatial

oise is inherently different from channel to channel ( Huppert, 2016 ).

herefore, we conducted an omnibus 2 (Hemoglobin) X 5 (Condition)

reliminary ANOVA to generate the voxel-wise residuals from each con-

ition. These residuals were used to generate spatial autocorrelation

arameters. AFNI’s 3dClustSim uses these parameters to estimate mini-
6 
um cluster size need to achieve a family-wise error of 𝛼 < 0.05 (in the

ase of multiple comparisons, alpha represents the probability of mak-

ng at least one type I error) with a voxel-wise threshold of p < 0.05

 Cox et al., 2017 ). This process indicated a minimum cluster threshold

f 83 voxels for the frontal lobe mask and 43 voxels for the tempo-

al lobe mask. Voxel-wise HbO and HbR beta estimates were averaged

or each participant from the clusters that satisfied threshold require-

ents and used to carry out follow-up tests (SPSS, IBM, version 25).

he Greenhouse-Geisser correction for violations to sphericity were ap-

lied where necessary, and Bonferroni corrections were used to account

or multiple comparisons in follow-up analyses. 

.5.2. Correlational analyses between performance score and cortical 

ctivation 

Correlational analyses were carried out with AFNI’s 3dttest ++ . Using

 p threshold of 0.05, the LN c voxel-wise HbO map was tested against

ero using subject behavioral scores for the LN condition as a covariate

o identify cortical regions where variance of LN c voxel-wise betas co-

aried with performance. The same analysis was performed between the

V c voxel-wise HbO map and behavioral scores from the LV condition.

he same cluster size thresholds were applied as described above. 

. Results 

Study results were based on data from 38 participants (20 females).

ue to a task programming error, a small number of LV trials were un-

ntentionally excluded from the experimental task for some of the par-

icipants: four participants received 32 LV trials and seven participants

eceived 39 LV trials instead of the intended total of 40 LV trials. Rela-

ive to the total number of trials, it is unlikely that the absence of these

rials affected the statistical analyses. 

.1. Behavioral data: speech recognition performance 

Behavioral performance and comparisons between each condition

re detailed in Table 2 . Participants achieved, on average, 99.7% ( SD
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Table 2 

Results of behavioral performance per condition and paired samples t-tests 

between each condition (mean/standard deviation as percentage). 

A. Performance B. Pairwise Comparisons 

Condition Mean % (Std. Dev. + /-) Comparison t Sig. (2-tailed) 

HN 99.7 (.01) HN – HV 7.97 < .001 

HV 92.5 (.06) HN – SQ -2.09 .044 

LN 47.7 (.12) HV – SQ -8.35 < .001 

LV 50.3 (.11) LN – LV -1.599 .118 
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Fig. 3. Results of ANOVAs A (Hemoglobin (2) X Noise Level (3)) and B 

(Hemoglobin (2) X Vocoding Level (3)). A. Hemoglobin X Noise Level interac- 

tion – Top bar plot shows average changes in HbO and HbR ( ΔHb) during SQ, 

HN, and LN c conditions for the interaction in the MFG (z = 8); bottom bar plot 

shows the second interaction of this type in the IFG (z = -2). B. Hemoglobin X 

Vocoding Level interaction – Bar plot shows average changes in HbO and HbR 

during SQ, HV, and LV c conditions for the interaction in the MTG (z = -2). 

HbO, oxyhemoglobin (red squares); HbR, deoxyhemoglobin (blue stripes); IFG, 

inferior frontal gyrus; MFG, middle frontal gyrus; MTG, middle temporal gyrus. 

Error bars represent standard error of the mean. Significance was adjusted for 

multiple comparisons and is marked as follows: ∗ p ≤ 0.05, ∗ ∗ p ≤ 0.01; ∗ ∗ ∗ p ≤ 

0.001; n.s., not significant. 
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g  
 /- 1%) in the HN condition, 92.5% ( SD + /- 5.6%) in the HV condi-

ion, and perfect scores in the SQ condition. LN performance varied be-

ween subjects ranging 27.5% to 75% correct; LV scores varied between

ubjects from 27.5% to 72.5% correct. As expected, average scores in

N and LV were 48% ( SD + /- 12.4%) and 49.9% ( SD + /-10.8%), re-

pectively. Two research assistants independently scored each speech

erception measure with high interrater reliability ( 𝛼= 0.9817, Krippen-

orff alpha). Paired samples t-tests between performance scores in each

ondition can be viewed in Table 2 . Performance in the LV and LN con-

itions were significantly worse than the other conditions but were not

ignificantly different from each other. 

.2. fNIRS data 

.2.1. Image-based data 

Results of the ANOVAs are listed in Table 3 . The MNI coordinates of

he center of mass for each cluster denote the cluster location. Note that

hese coordinates and the number of voxels is not a quantitative mea-

ure of each cluster, as these image-based analyses are a projection of

he two-dimensional fNIRS data into three-dimensional space. Rather,

he MNI coordinates and cluster size provide an enhanced description

f activation localization and extent of the response, respectively. Sig-

ificant main effects and interaction effects appeared in portions of the

emporal and frontal cortices for all ANOVAs, suggesting that our ROIs

ere sensitive to the experimental task. 

Table 3 A summarizes the results of the first ANOVA which exam-

ned how added noise affected the baseline response to speech in quiet.

 main effect of Hemoglobin was found in the IFG ( F (37) = 11.62,

 = .002) and two clusters in the middle temporal gyrus (MTG)

 F (37) = 6.81, p = .013 and F (37) = 10.34, p = .003, respectively).

urther inspection of the first cluster in the MTG (anterior to the sec-

nd MTG cluster) revealed an inversed response, in which change in

bO was negative and change in HbR was positive. An interaction be-

ween Hemoglobin and Noise Level appeared in the middle frontal gyrus

MFG) ( F (37) = 5.87, p = .004) and IFG ( F (37) = 6.41, p = .006).

he first cluster revealed significantly higher activity for speech recog-

ition in high level background noise (LN c ) relative to the easier SQ

nd HN conditions (see Fig. 3 ). In the second cluster, changes in both

bO and HbR were found to be negative for all three conditions, where

he most negative changes occurred in the LN c condition. In a similar

anner, the ANOVA in Table 3 B examined how simulated CI speech

ffected the baseline response to speech in quiet. Main of effects of

emoglobin were observed in the MFG ( F (37) = 10.61, p = .002) and

TG ( F (37) = 7.77, p = .008). The second hemoglobin response was in-

ersed, showing negative changes in HbO and positive changes in HbR.

n interaction between Hemoglobin and Vocoding Level was observed

n the MTG ( F (37) = 6.59, p = .002), where activation during the low-

ntelligibility vocoded (HV c ) and speech in quiet conditions showed sig-

ificantly greater activation relative to the high intelligibility vocoded

ondition (HV) (see Fig. 3 ). Results of follow-up paired samples t-tests

or the Hemoglobin X Noise Level (ANOVA A) and Hemoglobin X Vocod-

ng Level (ANOVA B) interactions are listed in Table 4 . 

Table 3 C summarizes the ANOVA which tested whether cortical

esponse was affected by or interacted with distortion type (noise,
7 
ocoding) and intelligibility (high, low). A main effect of Hemoglobin

as observed in the MFG ( F (37) = 12.32, p = .001) and in the MTG

 F (37) = 7.06, p = .012). The first demonstrated the conventional ac-

ivation response (increase in HbO, decrease in HbR) while the sec-

nd demonstrated an inversed response. Hemoglobin X Distortion in-

eractions were observed in the IFG ( F (37) = 6.08, p = .018) and MTG

 F (37) = 9.06, p = .005) (see Fig. 4 ). The interaction in the IFG re-

ealed changes in hemoglobin to be negative for both oxy- and deoxy-

emoglobin, and no significant difference between HbO and HbR for

ither distortion condition. The MTG cluster showed significant activa-

ion for speech in noise conditions (HN, LN c ) relative to a lack thereof

uring the vocoded speech conditions (HV, LV c ). Hemoglobin X Intelli-

ibility interactions were observed in the MTG ( F (37) = 18.59, p < .001)
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Table 3 

Significant effects/interactions and their respective cluster regions b and coordinates are listed by ANOVA for the image-based analyses. MNI coordinates (x, y, z) 

report center of mass for each cluster effect. IFG, inferior frontal gyrus; MFG, middle frontal gyrus; MTG, middle temporal gyrus; Hb, Hemoglobin. 

ANOVA Factors 

(no. levels) Effect/ Interaction Cluster(s) a 
Cluster 

location b X Y Z 

Spatial Extent 

(2 mm 

2 ) F 

Effect Size 

( 𝜂2) 

A) Hb (2) X 

Noise Level (3) 

Hb 1 ∗ ∗ 

2 ∗ 

3 ∗ ∗ 

IFG 

MTG 

MTG 

43 

64 

67 

-45 

9 

32 

15 

-13 

-5 

86 

81 

65 

11.62 

6.81 

10.34 

.068 

.097 

.114 

Hb X Noise Level 1 ∗ ∗ 

2 ∗ ∗ 
MFG 

IFG c 
42 

52 

-50 

-32 

8 

-2 

135 

109 

5.87 

6.41 

.077 

.125 

B) Hb (2) X 

Vocoding Level (3) 

Hb 1 ∗ ∗ 

2 ∗ ∗ 
MFG 

MTG 

43 

64 

-49 

11 

9 

-10 

273 

101 

10.61 

7.77 

.164 

.122 

Hb X Vocoding Level 1 ∗ MTG 66 29 -3 148 6.59 .086 

C) Hb (2) X 

Distortion (2) X 

Intelligibility (2) 

Hb 1 ∗ ∗ ∗ 

2 ∗ ∗ 
MFG 

MTG 

43 

64 

-46 

10 

15 

-12 

114 

73 

12.32 

7.06 

.967 

.087 

Hb x Distortion 1 ∗ 

2 ∗ ∗ 
IFG 

MTG 

52 

67 

-33 

32 

0 

-6 

93 

52 

6.08 

9.06 

.064 

.077 

Hb x Intelligibility 1 ∗ ∗ ∗ 

2 ∗ 
MTG 

MFG 

66 

43 

27 

-49 

-4 

7 

150 

97 

18.59 

5.99 

.095 

.123 

D) Hb (2) X 

Distortion (2) X 

Accuracy (2) 

Hb 1 ∗ ∗ 

2 ∗ ∗ 

3 ∗ ∗ 

IFG 

IFG 

MTG 

46 

50 

66 

-46 

-36 

30 

12 

-6 

-5 

96 

92 

86 

10.35 

9.74 

8.26 

.055 

.105 

.147 

Hb x Distortion 1 ∗ IFG 53 -32 4 88 5.89 .050 

Hb x Accuracy 1 ∗ ∗ 

2 ∗ ∗ 
MFG 

MTG 

42 

64 

-50 

10 

4 

13 

184 

86 

9.72 

7.32 

.104 

.096 

a Significance is marked as follows: ∗ p ≤ 0.05, ∗ ∗ p ≤ 0.01; ∗ ∗ ∗ p ≤ 0.001. 
b All regions are from the left hemisphere. c Greenhouse-Geisser correction applied when necessary. 

Fig. 4. Results of ANOVA C (Hemoglobin (2) X Distortion (2) X Intelligibility (2)). A. Hemoglobin X Intelligibility interaction – Left bar plot contrasts average changes 

in HbO and HbR ( ΔHb) between high- (HN, HV) and low-intelligibility (LN c , LV c ) trials for the interaction in the MTG (z = -4); right bar plot shows the second 

interaction of this type in MFG (z = 8). B. Hemoglobin X Distortion interaction – Left bar plot contrasts average changes in HbO and HbR between speech-in-noise (HN, 

LN c ) and vocoded speech (HV, LV c ) trials for the interaction in the IFG (z = 0); right bar plot shows the second interaction of this type in the MTG (z = -6). HbO, 

oxyhemoglobin (red squares); HbR, deoxyhemoglobin (blue stripes); IFG, inferior frontal gyrus; MFG, middle frontal gyrus; MTG, middle temporal gyrus. Error bars 

represent standard error of the mean. Significance is marked as follows: ∗ p ≤ 0.05, ∗ ∗ p ≤ 0.01; ∗ ∗ ∗ p ≤ 0.001; n.s., not significant. 

8 



J. Defenderfer, S. Forbes, S. Wijeakumar et al. NeuroImage 240 (2021) 118385 

Table 4 

Results of follow-up paired samples t-tests for the interactions between Hb 

X Noise Level (ANOVA A) and Hb X Vocoding Level (ANOVA B). 

Interaction Comparison a t Sig. (2-tailed) b 

Hb X Noise Level (cluster 1) SQ – HN .031 1.00 

SQ – LN c -2.97 .015 

HN – LN c -2.97 .015 

Hb X Noise Level (cluster 2) SQ – HN 1.88 .201 

SQ – LN c 2.95 .018 

HN – LN c 2.15 .114 

Hb X Vocoding Level (cluster 1) SQ – HV 2.99 .015 

SQ – LV c -391 1.00 

HV – LV c -3.23 .009 

a The values that are being compared are the mean differences between 

HbO and HbR for each condition. 
b Bonferoni correction applied for multiple comparisons. 
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Fig. 5. Results of ANOVA D, Hemoglobin (2) X Distortion (2) X Accuracy (2) 

A. Hemoglobin X Accuracy interaction –Top bar plot contrast average changes in 

HbO and HbR ( ΔHb) between correct (LN c , LV c ) and incorrect (LN i , LV i ) trials 

for the interaction in the MFG (z = 4); bottom bar plot shows the second interac- 

tion of that type in the MTG (z = -14). B. Hemoglobin X Distortion interaction –bar 

plot contrasts average changes in HbO and HbR between speech-in-noise (HN, 

LN c ) and vocoded speech (HV, LV c ) trials for the interaction in the IFG (z = 4). 

HbO, oxyhemoglobin (red squares); HbR, deoxyhemoglobin (blue stripes); IFG, 

inferior frontal gyrus; MFG, middle frontal gyrus; MTG, middle temporal gyrus. 

Error bars represent standard error of the mean. Significance is marked as fol- 

lows: ∗ p ≤ 0.05, ∗ ∗ p ≤ 0.01; ∗ ∗ ∗ p ≤ 0.001; n.s., not significant. 
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(

nd MFG ( F (37) = 5.99, p = .019), both of which revealed significantly

ore activation during low-intelligibility conditions (LN c , LV c ) relative

o high-intelligibility conditions (HN, HV). 

Table 3 D summarizes the results of the second ANOVA which ex-

mined the effect of distortion type (background noise and vocoding)

nd trial accuracy (correct and incorrect). This ANOVA analyzed re-

ponses between LN c , LN i , LV c and LV i . Two effects of Hemoglobin

ere observed in separate clusters in the IFG ( F (37) = 10.35, p = .003

nd F (37) = 9.74, p = .003), respectively). The first demonstrated the

onventional hemodynamic response, while the second was inverted. A

hird effect of Hemoglobin was found in the MTG ( F (37) = 8.26, p = .007.

n interaction between Hemoglobin and Accuracy appeared in the MFG

 F (37) = 9.72, p = .004) and the MTG ( F (37) = 7.32, p = .010). The MFG

luster demonstrated a significant increase in activation during correct

esponses relative to incorrect responses (see Fig. 5 A). Alternatively, the

econd cluster in the MTG revealed negative changes in both HbO and

bR. 

Lastly, we examined brain-behavior associations by running corre-

ational analyses between accuracy in the low-intelligibility conditions

nd HbO change during these conditions. In the LN c condition, HbO

hange in the MFG was negatively associated with performance ( r = -

458; p = .004; see Fig. 6 ). HbO change in the IFG was positively as-

ociated with LN performance ( r = .393; p = .015), but the majority of

bO measures were less than zero. Change of HbO from LV c trials in the

FG was positively associated with performance ( r = .430; p = .007),

hereas HbO change was negatively associated with performance in the

TG ( r = -.398; p = .013). 

. Discussion 

.1. Effects of distortion type and speech intelligibility on the cortical 

esponse 

In the current report, we examined the effect of distortion, speech

ntelligibility, and performance outcome on the neural responses in left

rontal and temporal cortices. Consistent with existing literature on

peech processing, activation was found across large swaths of these

egions ( Golestani et al., 2013 ; Mattys et al., 2012 ; Peelle, 2018 ). This

tudy sheds light on how the NH brain reacts to decreasing intelligibility

nd how compensatory mechanisms differ between distortion types. LN

nd LV conditions were designed to decrease average speech perception

erformance by approximately 50%, whereas their corresponding con-

itions with high intelligibility, HN and HV, yielded ceiling effects in

ehavioral performance ( Table 2 A). To assess activation during correct

erception of speech in noise, HN and LN c conditions were contrasted

ith SQ ( Table 1 A). The noise effect in the MFG ( Fig. 3 , top) was driven

y stronger activation to the LN c trials, relative to both HN and SQ. This

s consistent with previous reports ( Golestani et al., 2013 ; Wong et al.,
9 
008 ) and would suggest that the elevated activity is associated with

eural mechanisms that support speech understanding during degraded

istening conditions, and its absence amid highly intelligible speech in

ow-level noise (HN) suggests it’s not an obligatory response to the pres-

nce of noise. The second interaction seen in the IFG showed a noncon-

entional pattern of activity and was inverse of the response seen in the

FG cluster. That is, this region showed a significant decrease in HbO

ow-intelligibility noise (LN) condition. Decreases in HbO levels are not

ell understood (discussed in more detail in Section 4.4 ), but one pos-

ibility is that MFG and IFG are vascularly coupled. More evidence of a

ossible relationship between the MFG and IFG during the processing of

N stimuli can be observed in the brain-behavior correlational analyses

see Section 4.4 ). 
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Fig. 6. Results of brain/behavior correlational analyses between 

low-intelligibility conditions and their respective performance 

scores. A. Negative correlation in the MFG (left) and positive cor- 

relation in the IFG (right) are plotted for LN condition data. B. 

Positive correlation in the MFG (left) and negative correlation in 

the MTG (right) are plotted for LV condition data. Pearson Cor- 

relation (r) and significance shown inside each scatterplot. Linear 

trendline is in black. Clusters are denoted by black arrows. 
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The corresponding analysis of vocoding speech effects (ANOVA in

able 1 B) reveal an interaction in the MTG ( Fig. 3 ), in which vocoded

peech with low intelligibility (LV c ) was associated with stronger activ-

ty relative to highly intelligible vocoded condition (HV). This region

f the temporal lobe has been associated with combining phonetic and

emantic cues, allowing for the recognition of sounds as words and com-

rehension of a word’s syntactic properties ( Gow Jr., 2012 ; Graves et al.,

008 ; Majerus et al., 2005 ). Conditions where the signal information

s highly compromised would force the listener to rely more heavily

n this mechanism. Hence, elevated MTG activity may reflect compen-

atory neural engagement associated with enhancing lexical interface

etween sound and meaning ( Hickok and Poeppel, 2004 ). Interestingly,

he Hb X Vocoding Level cluster also revealed that speech in quiet (SQ),

r natural speech evoked significantly stronger activation relative to the

V condition as well. The integrity of spectral and temporal informa-

ion is uncompromised in the SQ stimuli, and therefore, this activity may

eflect the unrestricted lexical representation of phonemic and syllabic

peech information in the temporal cortex ( Poeppel et al., 2008 ). This

nding is consistent with the Ease of Language Understanding (ELU)

odel, which suggests that activation associated with natural speech

rocessing will be represented by mechanisms in the STG and MTG

 Rönnberg et al., 2013 ). If incoming speech information fails to rapidly

nd immediately map onto known phonemic/lexical representations in

he temporal cortex, higher level linguistic mechanisms might then be

ecruited to exploit other available features of the speech, not unlike the

attern of activation seen in the Hemoglobin X Noise Level interaction in

he MFG. It’s surprising to find that HV lacked activation relative to both

Q and LV. Even though HV sentences were highly intelligible, resulting

n near ceiling performance, the speech was still compromised due to the

ocoding process. Hence, we might expect that this degradation might

nterfere with matching phonemic/syllabic representations. It’s possible

hat the highly intelligible vocoded sentences-in-quiet aren’t sufficiently

egraded to trigger compensatory strategies, but also lack the full per-

eptual qualities of natural speech to evoke typical speech processing

echanisms, as well. 

The interesting difference between the Noise Level ANOVA and the

ocoding Level ANOVA is where these compensatory strategies are re-

ruited. That is, directly comparing speech in noise with the baseline

esponse to speech in quiet reveals that listeners, at a group level,
10 
end to rely on top-down frontal speech processing to resolve noise-

egraded speech. Understanding speech in background noise is made

asier by recruiting linguistic mechanisms such as inference-making,

nhibition, and switching attention. Consistent with previous imaging

tudies ( Davis et al., 2011 ; Mattys et al., 2012 ; Scott et al., 2004 ;

ong et al., 2008 ), the present study shows elevated frontal acti-

ation in the MFG associated with recognizing speech degraded by

oise. On the other hand, directly comparing vocoded speech with

peech in quiet conditions indicate that listeners rely on initial corti-

al processing in the temporal lobe to resolve highly-degraded vocoded

peech. 

Both types of distortion were contrasted with each other in ANOVA

, which was designed to evaluate whether cortical activation dur-

ng accurate speech recognition interacted with the type of distortion

nd/or its level of intelligibility. Two interactions between Hemoglobin

nd Intelligibility appeared in the MTG and MFG, both demonstrat-

ng that regardless of the manner that the speech is distorted, condi-

ions with low intelligibility are associated with significantly higher ac-

ivity relative to conditions with high intelligibility. This is consistent

ith Davis and Johnsrude’s seminal fMRI investigation of hierarchical

peech comprehension, which reported ‘form-independent’ (form of dis-

ortion) activation in the left middle and frontal gyri ( Davis and John-

rude, 2003 ). This means that the typical auditory system is able to re-

olve degraded speech (regardless of the type), by recruiting higher-level

inguistic mechanisms when they are available. The contrast between

oise-degraded speech and vocoded speech (regardless of intelligibil-

ty) reveals a Hemoglobin X Distortion interaction in the MTG, in which

 stronger cortical response is observed during speech in noise relative

o vocoded speech. This could be because the cortical responses of NH

isteners are attuned to processing speech in noise, as this is a common

xperience in everyday life. Listeners show that they are able to exploit

op-down mechanisms to optimize speech understanding even when the

peech is vocoded, as evidenced by the Hemoglobin X Intelligibility in-

eractions in the frontal lobe. However, due to subtractive nature of the

ocoded speech combined with their lack of experience with vocoded

timuli, the neural pathways to access these top-down strategies are not

tabilized, and therefore less reliable (explaining the lack of significant

rontal activity when contrasting vocoded speech with baseline speech

n quiet). 
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Overall, these findings reveal important differences in how the tem-

oral lobe and frontal lobe resolve these two types of distortion. Previous

esearch indicates that neural mechanisms of speech recognition adapt

ith task demands, the listeners’ motivation/attention, and semantic

nowledge from previous experience ( Leonard et al., 2016 ; Rutten et al.,

019 ). Results of the current study are consistent with this account.

iven a lifetime of conversations riding in the car, talking on the phone,

ating at restaurants, or listening to the television over the hum of an

ir conditioner or vacuum cleaner, listeners with normal hearing have

xtensive, well-established neural representations and pathways asso-

iated with listening to speech in background noise. If incoming audi-

ory information is compromised, listeners are able to pull from multiple

ortical networks to optimize speech understanding. This explains the

obust frontal response during low-intelligibility speech in noise when

ompared to high-intelligibility conditions (SQ, HN) (Hb X Noise Level

nteraction from ANOVA A), in addition to the increased temporal sen-

itivity to speech in noise when directly compared to vocoded speech

Hb X Distortion interaction from ANOVA C). However, when speech is

imulated to reflect a more realistic listening condition experienced by

I listeners, NH listeners show less reliance on experience-driven, top-

own pathways and more reliance on bottom-up auditory analysis and

ord meaning processing. 

.2. Effects of distortion type as a function of behavioral outcome 

Consistent with previous reports that compare the neural re-

ponse of correct and incorrect perception ( Dimitrijevic et al., 2019 ;

awrence et al., 2018 ), we observed a significant interaction between

emoglobin and Accuracy in the MFG ( Fig. 5 A), such that significant

ctivity was observed during accurate speech recognition trials. This

uggests that recruitment mechanisms in the frontal lobe are not obliga-

ory responses that come online during more complex tasks, but instead,

irectly relate to whether subjects are doing the task successfully. This

nteraction is collapsed across type of distortion, suggesting that listen-

rs are able to exploit similar MFG mechanisms when sufficient speech

nformation is preserved in artificially distorted speech. 

Given its domain-general functionality, the role of PFC activation

as been associated with experimental tasks involving response conflict

nd error-detection ( Carter et al., 1998 ; Rushworth et al., 2007 ). An

levated response during accurate performance, however, aligns with

any neuroimaging accounts that associate left PFC activity with per-

ormance monitoring during tasks where attentional control is needed

o optimize performance when the task is challenging but doable (M.

. Cohen et al., 2008 ; Dosenbach et al., 2008 ; Eckert et al., 2016 ;

erns, 2006 ). The FUEL model (framework for understanding effortful

istening) would further suggest that this activation is modulated by the

istener’s motivation to perform the task ( Pichora-Fuller, 2016 ). The cost

f exerting attentional control is related to the reward-potential associ-

ted with the task (be it external or intrinsic) ( Shenhav et al., 2013 );

herefore, activation increases in the frontal lobe during challenging

ognitive tasks insomuch that the participant is sufficiently motivated

nd able to perform the task. It’s important to note that neither moti-

ation nor effort was measured in the current study. Additionally, mea-

ures of effort have been shown to vary significantly between listening

onditions where behavioral performance is otherwise equivalent, in-

icating that the negative impact of increasing cognitive demands can

o unnoticed if simply assessing a performance score ( Francis et al.,

016 ; Zekveld and Kramer, 2014 ). However, the FUEL account could,

n part, explain the lack of activation during incorrect perception if lis-

eners are disengaged during incorrect trials. Several studies have al-

eady documented the impact of decreasing intelligibility on measures

f effort ( Ohlenforst et al., 2018 ; Winn et al., 2015 ). Ongoing work

 Defenderfer et al., 2020 ; Zekveld et al., 2014 ) using independent mea-

ures of effort, such as pupillometry, concurrently with neural measures

ay help to resolve the role of effort in the relationship between brain

nd behavior reported here. 
11 
It is interesting to note that we did not find a comparable result to the

ccuracy effect reported in a previous study ( Defenderfer et al., 2017 ),

here significantly greater activity in the temporal lobe was associated

ith correct speech-in-noise trials. Rather, the Hb X Accuracy cluster in

he MTG shows a non-canonical response pattern with decreased HbO.

revious imaging studies of speech perception have reported left antero-

ateral temporal activation to be associated with speech intelligibility

 Evans et al., 2014 ; Narain et al., 2003 ; Obleser et al., 2007 ; Scott et al.,

000 ). While we found an accuracy effect (correct > incorrect, i.e., intel-

igible > unintelligible) in the frontal lobe, we did not find this effect in

he STG. First, it’s possible that the noise/artifact associated with speak-

ng may have been so pronounced, that after SS channel signals were

orrected from the dataset, no meaningful effects could be recovered.

econdly, while the conditions used in Defenderfer et al. (2017) were

early identical to speech-in-quiet (SQ), vocoded (HV), and speech-in-

oise (LN) conditions of the current study, Defenderfer et al. (2017) used

oudspeakers for stimulus presentation, whereas the current study used

nsert earphones. Thus, the manner of stimulus presentation could have

ltered the quality of the stimulus and/or attentional strategies in this

ask. 

.3. Evidence of brain-behavior relationship with speech recognition 

By examining the relationship between neural activation and behav-

oral performance in the low-intelligibility conditions, we were also able

o gain insight into how individual differences in activation were associ-

ted with success on the low-intelligibility speech perception conditions

LN c and LV c ). Average change in HbO was negatively correlated with

peech scores in the MFG ( Fig. 6A ). This negative association suggests

hat listeners’ ability to recognize speech in noise is inversely related

o the degree to which the region is engaged. Recall that group-level

FG activity is associated with processing of correct LN trials relative

o the higher intelligibility conditions. Together, these results suggest

hat MFG activity supports speech recognition more strongly for indi-

iduals that perform more poorly in the LN condition. Neuroimaging ev-

dence indicates that some listeners may exhibit neural adaptation such

hat neural responses decrease as listeners become accustomed to novel

timuli ( Blanco-Elorrieta et al., 2021 ). Within the current task, response

ariability from this region may reflect cortical efficiency with which

ubjects are able to resolve the speech in noise, such that the poorest

erformers rely more heavily on MFG activation (with little to no adap-

ation), and better performers that have more efficient frontal mecha-

isms exhibit relatively lower activation. Second, a positive association

etween change HbO during LN c trials and LN performance was ob-

erved in the IFG. As shown in Fig. 6B , however, change in HbO tended

o be negative and increased closer to zero with higher speech scores.

n contrast to MFG, the Hb X Noise Level interactions from ANOVA A

evealed a significant decrease in HbO on the LN condition which was

nverse to the pattern of MFG. Thus, the coupling between these two

egions is evident at the individual subject level, and the relationships

ith speech score and activation at the individual level is consistent

ith group level activation. 

Average HbO change in the IFG during LV c trials was positively cor-

elated with performance during the LV condition, while an inversed

elationship was observed in the MTG ( Fig. 6 B). Previous work exam-

ning the learnability of vocoded speech stimuli report a similar corre-

ation between comprehension of CI simulations and activity in the IFG

 Eisner et al., 2010 ). Many methodological differences exist between the

ocoded stimuli of the current study and that used in Eisner et al. (2010) .

owever, it remains possible that this cluster in the IFG could be demon-

trating variability in activation based on individual differences in learn-

ng capacity across the sample, as higher activity is associated with bet-

er performance. The negative correlation in the MTG suggests that bet-

er performers in the LV condition need not rely as heavily on the initial

ortical processes of the temporal lobe, and are more readily able to re-

ruit frontal mechanisms to resolve heavily degraded vocoded speech. 
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.4. Non-canonical (inverted) hemodynamic responses 

In this study, we observed inverted hemodynamic responses, demon-

trating changes in hemoglobin opposite of the typical canonical re-

ponse (e.g., negative HbO, positive HbR). The hemodynamic response

hat we measure with fNIRS is a secondary measure of the neuronal

ctivity taking place in the cortex. The complex nature of neurovas-

ular coupling often requires careful interpretation of results, as the

europhysiological basis of a negative or inverted response is not com-

letely understood. Inverted responses are commonly reported in in-

ants, and studies have suggested multiple possible explanations for

uch responses including changes in hemocrit during transition from

etal to adult hemoglobin ( Zimmermann et al., 2012 ) or the interac-

ion between ongoing developmental changes during infancy and the

nfluences of stimulus complexity and experimental design ( Issard and

ervain, 2018 ). However, the research on the relationship between in-

erted NIRS responses and cortical activity in adults is limited. Evidence

rom fMRI ( Christoffels et al., 2007 ), magnetoencephalography (MEG)

 Ventura et al., 2009 ), fNIRS ( Defenderfer et al., 2017 ), and electroen-

ephalography (EEG) ( Chang et al., 2013 ) studies indicate that inverted

esponse functions could reflect cortical suppression related to speech

roduction processing. Given that the current study had participants vo-

alize their responses during the task, it’s possible that the inverted/non-

anonical responses observed here could reflect such speech-related sup-

ression. However, any influence of speaking-related artifact on the ac-

ivity from responses during speech perception should have been miti-

ated, as we modeled the responses phase in the GLM, and every condi-

ion trial was followed by a vocal response (therefore, contrasting condi-

ions should cancel out any effect of this). Alternatively, NIRS method-

logical studies demonstrate that muscle activity can cause increases

n both HbR and HbO ( Volkening et al., 2016 ; Zimeo Morais et al.,

017 ) and has been shown to influence NIRS data during tasks which

nvolve overt speaking ( Schecklmann et al., 2010 ). The inverted/non-

anonical responses observed near the temporal muscle could reflect

he influence of muscle-related activity. Channel-wise time series data

emonstrating non-canonical and/or inverted hemodynamic responses

re plotted at the bottom of Fig. 2 A. Additionally, the physical act of

peaking can cause respiration-induced fluctuations of carbon dioxide

CO 2 ) in the vascular system ( Scholkmann et al., 2013 ). Decreases in

O 2 are associated with cerebral vasoconstriction and can result in a

elative increase in HbR ( Tisdall et al., 2009 ). All things considered,

he inverted responses observed in the present study should be cau-

iously interpreted, as the neurophysiological mechanisms underlying

on-canonical responses are not fully understood. 

. Limitations and future directions 

While fNIRS presents numerous advantages relative to other imaging

echniques, the nature of near infrared light poses inherent limitations to

he technique. Generally, the measurement depth is limited to regions

ithin 1.5 – 2 cm of the scalp; therefore, our interpretation of fNIRS

ecordings are limited to the cortical surface ( Chance et al., 1988 ). Addi-

ionally, the changes in optical density measure by fNIRS is a cumulative

esult, reflecting possible contributions from superficial blood flow, skin

irculation, and cardiovascular effects ( Quaresima et al., 2012 ). These

imitations are addressed in the current study by experimental methods

e implemented and application of rigorous artifact correction tech-

iques prior to extracting hemodynamic estimates. Muscle artifact may

ave contaminated certain signals closer to the temporal muscle, and

t’s possible that this contributed to the inversed responses observed in

his study, as muscle artifact can lead to an inversed response of either

bO and/or HbR ( Volkening et al., 2016 ). Incorporation of a short dis-

ance probe over the temporal muscle mitigated the possible effects of

uscle artifact. 

Comparison of accurate and inaccurate trials during sentence recog-

ition revealed neural response differences between behavioral out-
12 
omes. The criteria for accuracy measurement was uncompromising, as

he entire sentence had to be repeated correctly to qualify as a correct

esponse. This indicates that incorrect responses comprised a wide range

f possible answers (e.g.; confidently but incorrectly repeating the sen-

ence, with the presumption that an accurate response was given; re-

eating most of the sentence correctly and missing one word; simply

aying, “I don’t know ”, etc.). This method of coding neglects potential

eural variations that may exist in such a wide variety of response types.

urthermore, vocalization of trial responses implicates other potential

ources of artifact to fNIRS recordings (discussed in section 4.4 ). In the

uture, we plan to explore use of silent response methods to report per-

eption, such as closed set, forced choice methods, signal detection, or

yping response on a keyboard ( Faulkner et al., 2015 ). 

Previous research shows evidence of both behavioral and neural

daptation during cognitive tasks ( Guediche et al., 2015 ; Samuel and

raljic, 2009 ). Specifically, behavioral adaptation to vocoded speech

timuli has shown significant improvements in perception accuracy af-

er exposure and training with 30 vocoded sentences ( Davis et al., 2005 ).

herefore, it is possible that activation to correct vocoded speech trials

ould be related either to participants’ learning of the stimuli and/or

ould have adapted over time ( Eisner et al., 2010 ). 

Future research should investigate cortical associations with listen-

ng effort by using physiological measurements, such as pupillometry,

o characterize fNIRS recordings. Simultaneous eye-tracking with fNIRS

s exceptionally advantageous, as they both offer unrestrictive and con-

enient means of investigating cognitive function in typical and spe-

ial populations. Neural measures that correlate with task performance

re likely revealing cortical areas associated with behavioral outcome.

owever, performance measurements alone do not fully depict listening

ffort and emphasize the need for physiological markers to describe the

ognitive demand encountered during effortful speech recognition. Pre-

iminary results ( Defenderfer et al., 2020 ) indicate that concurrent mea-

urement of fNIRS and pupil data is feasible and reveal the potential to

eepen our understanding of listening effort associated with simulated

I speech. 

. Conclusions 

Overall, the current findings suggest that frontal and temporal cor-

ices are differentially sensitive to the way speech signals are distorted.

hen speech is degraded with more natural forms of distortion (back-

round noise), established neural channels in the frontal lobe enact top-

own, attentional mechanisms to optimize speech recognition. How-

ver, this can be disrupted when the speech quality is deteriorated to

he point where accurate perception is less likely, as cortical activation

s significantly diminished during incorrect trials. Despite equivalent be-

avioral performance between speech-in-noise and vocoded speech con-

itions, cortical response patterns in NH adults suggest heavier reliance

n temporal lobe function during vocoded speech conditions. Dimin-

shed frontal cortex activity during vocoded speech conditions suggests

hat untrained listeners of vocoded stimuli do not as reliably recruit the

ame attentional mechanisms employed to resolve more natural forms

f degraded speech. Finally, the correlations between speech perception

cores and cortical activity motivate future research to examine individ-

al differences more closely as the participants that performed better

n the low-intelligibility condition differed in their reliance on cortical

echanisms from those indicated by group level activation. 
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