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Abstract

Research over the past decade has suggested that the ability to hold information in visual working

memory (VWM) may be limited to as few as 3-4 items. However, the precise nature and source of

these capacity limits remains hotly debated. Most commonly, capacity limits have been inferred

from studies of visual change detection, in which performance declines systematically as a

function of the number of items participants must remember. According to one view, such

declines indicate that a limited number of fixed-resolution representations are held in independent

memory ‘slots’. Another view suggests that capacity limits are more apparent than real, emerging

as limited memory resources are distributed across more to-be-remembered items. Here we argue

that, although both perspectives have merit and have generated and explained an impressive

amount of empirical data, their central focus on the representations—rather than processes—

underlying VWM may ultimately limit continuing progress in this area. As an alternative, we

describe a neurally-grounded, process-based approach to VWM: the dynamic field theory.

Simulations demonstrate that this model can account for key aspects of behavioral performance in

change detection, in addition to generating novel behavioral predictions that have been confirmed

experimentally. Furthermore, we describe extensions of the model to recall tasks, the integration

of visual features, cognitive development, individual differences, and functional imaging studies

of VWM. We conclude by discussing the importance of grounding psychological concepts in

neural dynamics as a first step toward understanding the link between brain and behavior.
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1. Introduction

Working memory refers to the cognitive and neural processes underlying our ability to hold

information in mind when it is no longer present in the environment, to mentally manipulate

this information, and to use it in the service of cognition and behavior (Baddeley, 1986;

Postle, 2006). Over the past several decades, a growing body of research has revealed that

the amount of information that may be held in working memory, known as working memory

capacity, is severely limited to as few as 3-5 items (Cowan, 2001; Luck & Vogel, 1997;

Sperling, 1960). Individual differences in working memory capacity are predictive of other

important cognitive abilities including language comprehension, learning, planning,

reasoning, general fluid intelligence, and scholastic achievement (Baddeley, 1986; Cowan et

al., 2005; Engle, Kane, & Tuholski, 1999; Jonides, 1995; Just & Carpenter, 1992).

Additionally, impaired working memory function has been implicated in the constellation of

cognitive deficits that accompany psychiatric and neurological conditions, including

schizophrenia (Keefe, 2000). Given its central importance, significant efforts within the

neural and behavioral sciences have focused on characterizing the limits of working memory

and elucidating the processes that underlie this critical aspect of cognition.

Capacity limits in working memory have been probed using a variety of tasks across verbal

and visual domains (Cowan, 2001; Miyake & Shah, 1999). Much of the evidence suggesting

the existence of capacity limits in the visual domain stems from studies employing some

variant of the change detection task depicted in Figure 1A (Luck & Vogel, 1997). In this

task, participants view briefly-presented memory arrays consisting of one or more simple

objects to remember. After a short delay, a test array is presented, and the participant must

compare the test array with the memory array to identify whether the arrays are the same or

different. In most experiments, the memory and test arrays are identical on 50% of trials,

and differ by one item on the other 50% of trials; however, some variants of the task probe

memory for a single item at test, either through a cue or by presenting only one item in the

test array. Figure 1B shows an example of adults’ performance in an experiment where each

memory array contained between one and six colored squares (see Appendix for

methodological details). As shown by the dashed line, accuracy was near perfect for arrays

with small numbers of items and decreased systematically as the number of items increased.

This decline in performance with increasing numbers of to-be-remembered items, referred to

as the set size, provides the primary evidence for the limited capacity of visual working

memory (VWM).

A topic of considerable debate over the past 5-10 years has been how best to characterize

and explain the apparent capacity limits suggested by studies of visual change detection;

Table 1 summarizes the primary contrasts between the dominant theories. According to one

prominent perspective, the observed decline in performance with increasing set size reflects

the functioning of a working memory system that stores a limited number of fixed resolution

representations in discrete memory ‘slots’ (Cowan, 2001; Luck & Vogel, 1997; Zhang &

Luck, 2008). By this view, errors primarily arise when the item probed at test is not stored in

memory, which occurs when set size exceeds the number of available memory slots1. That

is, performance declines are caused by a structural limit in the number of items that can be

stored in VWM. More recently, an alternative view that does not rely on the notion of a
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capacity limited working memory store has been put forth (Bays & Husain, 2008; Wilken &

Ma, 2004). This approach conceives of VWM as a continuous resource that is flexibly

allocated to each of the items in memory. As set size increases, less and less of this resource

is available for each item, and as a result, each item is stored with lower fidelity (i.e., with

greater amounts of variability or noise). The increase in noise as more items are encoded in

VWM makes it difficult to discriminate familiar from novel inputs at test (i.e. to detect the

signal in the noise), giving rise to the appearance of a capacity limit at higher set sizes when

in fact there is none.

These two perspectives have generated and explained an impressive amount of empirical

data and have largely dominated the discourse in VWM research over the last several years.

Despite their successes, however, an increasing number of researchers have begun to

develop approaches that attempt to move beyond the slots vs. resources dichotomy. The

most prominent among these are the so called “hybrid” views, in which an upper bound on

capacity is proposed to coexist with a variable limit on the total amount of information that

can be stored about each object (Alvarez & Cavanagh, 2004; Xu & Chun, 2006). In the

present paper, we describe an alternative account based on the dynamic field theory, a

neurally-grounded, process-based approach to working memory that has been used to

capture performance in change detection and recall tasks that probe VWM (Johnson &

Simmering, in press). As Table 1 shows, this theory incorporates some characteristics of

both slot and resource accounts, as well as providing more specificity in the processes

underlying performance in the change detection task.

Through a series of simulations, we will illustrate how the model can capture performance in

change detection. Additionally, we highlight novel behavioral predictions that have been

derived from the model, and consider how the model addresses issues relevant to the

proposed neural systems underlying VWM, the integration of visual features, and VWM

development. We show that, although our model overlaps to some extent with both slot and

resource approaches, it violates key assumptions of both views of the nature of VWM (see

Table 1). We conclude by arguing that moving in the direction of neurally-plausible,

process-based approaches to working memory is critical if we are to move the debate in this

area forward and begin to understand the link between brain and behavior.

2. The Dynamic Field Theory of visual working memory and change

detection

In this section, we describe a formal theory of VWM and change detection that builds on the

Dynamic Field Theory (DFT) of visuospatial cognition (Johnson & Simmering, in press;

Spencer, Perone, & Johnson, 2009; Spencer, Simmering, Schutte, & Schöner, 2007), and

how it embodies the characteristics listed in Table 1. Performance in the change detection

task can be conceptualized as involving four cognitive processes: encoding items from the

memory array into VWM, maintenance of these items over the memory delay, comparison

1Note, however, that according to the discrete slots view articulated by Zhang & Luck (2008), which applies a Signal Detection
Theory conceptualization to a strictly limited number of items, errors may also arise when the probed item is in memory but its
resolution is insufficient to support accurate change detection (e.g., when the change is very small, as in Awh, Barton, & Vogel (Awh,
Barton, & Vogel, 2007)).
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of the items in VWM to the test array, and generating a “same” or “different” decision. The

two types of trials, change and no change, combined with the two possible responses lead to

four response types. In the parlance of Signal Detection Theory (Green & Swets, 1966),

correct responses are referred to as “correct rejections” (on no change trials) and “hits” (on

change trials), and errors are referred to as “false alarms” (on no change trials) and “misses”

(on change trials). Through a series of simulations, we illustrate how the model encodes,

maintains, and compares visual inputs, and generates same/different decisions in the context

of change detection. We also show how each of these response types come about in the

model, highlighting how the model’s explanation of errors, in particular, diverges from

common assumptions in the literature. Later sections describe how the model can be used to

account for performance in cued recall tasks, recent work using the DFT to capture

neuroimaging results, extensions of the model architecture, and the development of working

memory across domains.

The DFT is in a class of continuous-attractor neural network models originally developed to

capture the dynamics of neural activation in visual cortex (Amari, 1977; Wilson & Cowan,

1972). The general form of models in this class consists of a layer of feature-selective

excitatory neurons reciprocally coupled to a layer of inhibitory interneurons. Neurons within

the excitatory layer interact via short-range excitatory connections and project to similarly-

tuned neurons in the inhibitory layer. The inhibitory layer, in turn, projects broad inhibition

back to the excitatory layer. The resulting locally excitatory and laterally inhibitory, or

“Mexican Hat,” pattern of connections allows localized peaks of activation to form in

response to input. The center of mass of such peaks provides an estimate of the particular

stimulus value (e.g. hue, orientation, spatial location) represented by the neural system at a

particular moment in time. Additionally, with strong excitatory and inhibitory projections,

peaks of activation can be sustained in the absence of continuing input. This property of

dynamic neural fields forms the basis for the sustained activation purported to underlie

working memory (Compte, Brunel, Goldman-Rakic, & Wang, 2000; Edin et al., 2009;

Tegner, Compte, & Wang, 2002; Trappenberg & Standage, 2005; Wang, 2001).

To apply this neural framework to change detection performance, Johnson and colleagues

(Johnson, Spencer, Luck, & Schöner, 2009; Johnson, Spencer, & Schöner, 2009) proposed

the three-layer model depicted in Figure 2. The model consists of an excitatory contrast field

(CF), an excitatory working memory field (WM), and a shared inhibitory layer (Inhib). In

each cortical field, the x-axis consists of a collection of neurons with receptive fields tuned

to particular color values, the y-axis shows each neuron’s activation level, and the z-axis

captures the time within a trial; interactions within and between layers are shown as green

(excitatory) and red (inhibitory) arrows (equations and parameter values can be found in the

Appendix). In addition, to capture the decision required in the change detection task, a

simple competitive neural accumulator model (Standage, You, Wang, & Dorris, 2011; Usher

& McClelland, 2001), comprised of two self-excitatory and mutually-inhibitory neurons,

was coupled to the three-layer architecture. One neuron receives summed excitatory

activation from CF to generate different responses, while the other receives summed

activation from WM to generate same responses (see Simmering & Spencer, 2008, for a

similar process in position discrimination). Activation autonomously projects to these
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neurons when a decision is required in the task: a “gating” neuron receives projections from

WM as well as the stimulus input; when activation of this gate neuron rises above threshold

(at the presentation of the test array), its activation combines with specific projections (i.e.,

CF and WM) to the response neurons (described further in section 2.2.1; see Appendix for

complete details). The response neurons are coupled in a “winner-takes-all” fashion such

that only one neuron will attain above-threshold activation, thereby generating a response.

Thus, the model’s response is the result of competition between activation projected from

CF, which preferentially represents novel perceptual inputs (i.e., items that are not currently

being held in memory), and WM, which represents the current contents of memory.

Note that while variants of this architecture have been closely linked to neurophysiology

(e.g., Bastian, Riehle, Erlhagen, & Schöner, 1998; Erlhagen, Bastian, Jancke, Riehle, &

Schöner, 1999; Erlhagen & Schöner, 2002; see Schöner & Spencer, in press, for review), the

specific model described here was not derived directly from neurophysiological studies of

WM and change detection. Instead, the model was designed to provide a functional neural

account of behavior in the change detection task by linking a particular neural

implementation of encoding and maintenance in WM to plausible comparison and decision

processes. We contend that models of this sort can make an important contribution to our

understanding of the neural bases of cognitive processes by showing how the functionality

required to support behavior in tasks such as change detection can arise within relatively

simple neural circuits organized according to known neural principles. Below we discuss

current work aimed at connecting this model more directly to neural data (see Sections 3.2

and 3.5).

2.1. Quantitative model simulations

To demonstrate that the DFT provides a plausible neural mechanism for change detection

performance, we conducted a set of quantitative simulations to fit the model’s performance

to behavioral data collected in our lab. Full details of the behavioral method and results

(shown in Figure 1B) can be found in the Appendix. In brief, we conducted a change

detection study using colored squares as stimuli; the memory array was presented for 500

ms, followed by a 1 s delay. Next, the test array was presented in which all of the items were

identical to the memory array (50% of trials) or one item had changed (50% of trials). The

test array remained visible until the participant entered a response on the keyboard (cf.

Figure 1A). Set size varied randomly across trials between one and six items, with no colors

repeated within an array. Our results replicate the general finding of a monotonic decrease in

accuracy as set size increased, as shown in Figure 1B. We estimated capacity by computing

Pashler’s k (Pashler, 1988) separately for each participant at each set size, and then taking

the highest value across set sizes as the participant’s capacity (e.g., Olsson & Poom, 2005;

Todd & Marois, 2005). Mean capacity across 19 participants was estimated to be 4.58 items

(SD = 0.78, range = 3.00-5.68). This mean estimate of capacity is somewhat higher than the

3-4 item capacity reported by some investigators (e.g., Luck & Vogel, 1997), although the

range of performance is comparable to other reports in the literature using similar

methodology (e.g., Alvarez & Cavanagh, 2004; Cowan, Fristoe, Elliott, Brunner, & Saults,

2006; Gold et al., 2006; Ross-Sheehy, Oakes, & Luck, 2003).
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Table 2 shows results from our model simulations along with participants’ data,

demonstrating the close fit of the model across both change and no change trials (see

Appendix for full details; parameter values are shown in Table A1). Note that each mean

from the simulations fell within one standard deviation of the means from the behavioral

data, and the mean absolute error between the model’s performance and our behavioral data

was 2.26%, less than one half the overall standard deviation observed for the behavioral data

(7.11%). As with the behavioral data, we used Pashler’s k to compute the model’s capacity

separately for each “participant” (simulation run) by taking the highest estimate across set

sizes, then averaging across runs; this resulted in an estimate of 4.64 items. Thus, the DFT

can provide a close fit of adults’ performance in the change detection task across set sizes

one through six.

2.2. Decision-making, errors, and capacity limits in the DFT

In addition to providing robust quantitative fits to adults’ change detection performance, a

key strength of the proposed framework is the opportunity it provides to explore the

dynamic processes underlying performance on a trial-by-trial basis. This opportunity is

lacking in other, non-process based accounts of VWM capacity limits that may capture

overall performance, but fail to specify a response on each trial (see Table 1). Here we probe

how change detection decisions arise in the DFT to account for capacity limits observed in

behavioral experiments. We begin by considering how correct responses (i.e., correct

rejections and hits) arise. Next, we examine the factors contributing to errors (i.e., misses

and false alarms). Finally, we consider the origin of capacity limits by exploring the number

of unique neural representations that can be maintained concurrently in WM.

2.2.1. Correct rejections and hits—Figure 3 shows a trial in which the DNF model

makes a correct rejection, correctly responding same when the display colors were identical

between the memory and test arrays. This figure shows time-slices through all three layers at

critical points in the trial: at the end of memory array presentation following encoding

(Figure 3A); at the end of the delay when the colors are being maintained in memory (Figure

3B); and when the decision is generated during presentation of the test array (Figure 3C). To

show the time course of the decision process, activation of the decision neurons is shown

across time in the trial. Note that, although separate task “stages” are highlighted for

simplicity in each simulation, patterns of activation evolve continuously throughout the trial,

and the stage-like character of performance arises as a result of the timing of specific task

events together with dynamic interactions within and between the model’s layers, rather than

different processes corresponding to different stages.

The trial begins with the presentation of the memory array for 500 ms. This event is

captured as localized excitatory input projected strongly into CF and weakly into WM (see

Appendix for details). As shown in Figure 3A, by the end of the stimulus presentation

period, multiple peaks of activation have formed in WM, reflecting the consolidation of each

of the memory array colors in memory. At this time, bumps of activation have also formed

in Inhib, as a result of excitatory input from WM and CF. Activation from Inhib is projected

back to both WM and CF. Inhibitory input to WM together with local excitatory recurrence

among neurons allows self-sustained peaks to remain active in WM throughout the delay
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interval (Figure 3B). In contrast, inhibitory input to CF produces regions of inhibition

centered at field sites representing the colors being held in WM. Thus, when the test array

colors match the colors being held in memory, excitatory stimulus-related input to CF is met

with strong inhibitory input (resulting from the reciprocal connection between Inhib and

both CF and WM) at the same color values. This prevents peaks of activation from forming

at those locations in CF (see Figure 3C), and the model “recognizes” that the test array

colors are the same as the items currently held in memory. When the test array is presented,

the stimulus input combines with an excitatory projection from WM to drive the activation

of a “gate” neuron. When the gate neuron’s activation exceeds threshold (zero), this

autonomously enables the projection from CF and WM to the different and same neurons,

respectively. In this trial, the presence of four peaks in WM results in strong activation of

the same neuron, whereas the inhibitory troughs in CF prevent this layer from sending

activation to the different neuron. Thus, the same neuron rises above threshold, producing a

correct rejection.

Figure 3 also shows how the model generates a hit response, correctly responding different

when one item has changed at test. In this trial, following the encoding and delay (Figure

3A, 3D), the test array appears with a change in one of the colors (from -120° to 80°; Figure

3E). This new input projects to a relatively uninhibited region of CF, allowing an input-

driven peak to form (see circle in Figure 3E); note that a peak also begins to form in WM,

although activation builds more slowly in WM than in CF at this new color value. Because

above-threshold peaks are present in WM and CF at test, strong activation is projected to

both the same and different neurons, resulting in competition for response output. In the

model, the projection from CF to the decision system is stronger than the associated

projection from WM (see Appendix). Consequently, the different neuron pierces threshold

first and is able to suppress the same neuron, generating a correct different response (see

dashed line in Figure 3).

2.2.2. Misses and false alarms—The previous simulations show how the model

performs the encoding, maintenance, comparison, and decision processes necessary for

correct performance in the change detection task. These two response types are the most

frequent responses observed in adults’ change detection performance (see Figure 1B and

Table 2). As set size increases, however, performance begins to decline. In particular, the

proportion of hits begins to decrease as participants make more misses. The failure to detect

changes when they occur is the most common type of error seen in change detection tasks,

typically occurring about two to three times more frequently than false alarms (e.g., Vogel,

Woodman, & Luck, 2001).

Figure 4 shows the DFT performing a set size four miss trial. As before, the trial begins with

the presentation of four inputs to the model (Figure 4A), and this event produces peaks in

WM that sustain throughout the delay (Figure 4B). At test, one of the colors is changed to a

new value (i.e., -120° changes to -80°). However, unlike the hit trial described above, on this

trial the new color falls between two colors already held in WM (Figure 4C). Because

inhibition spreads laterally around the two remembered items, activation at the changed

value in CF is still relatively inhibited compared to other field sites during the delay (e.g.,

compare activation at the location of the change in Figure 3D versus Figure 4D). Thus, the
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test array input to CF is unable to rise to above-threshold levels of activation at the color

value of the new item (see circle in Figure 4C). As a result, the activation projecting from

WM to the same neuron is stronger than the input from CF to the different neuron, and the

model incorrectly makes a same response (see solid line in Figure 4). In general, misses

become more likely as inhibition spreads more broadly in CF at higher set sizes. Moreover,

the present simulation highlights that the likelihood of missing a change may depend on the

metric relationship between the changed item and the items in WM. We return to this issue

in Section 2.2.4.

An example of the final response type—false alarms—is also shown in Figure 4. This trial

begins with the four inputs projecting to CF and WM, building peaks in WM (Figure 4A).

However, during the delay on this trial (Figure 4D), activation for one color value is not

maintained (see circle in Figure 4D). Without a peak in WM, there is no corresponding

inhibition in CF at this field location. Consequently, an input-driven peak builds in CF at the

location of the forgotten item even though the same four colors are present in the test array

(see circle in Figure 4E). The presence of an above-threshold peak in CF strongly activates

the different neuron in the decision system, which generates an incorrect response (see

dashed line in Figure 4). Thus, even though the model is capable of holding four (or more)

items in WM at one time, competition between neighboring peaks prevented one item from

being consolidated in WM (discussed further in the following section), which produced a

false alarm.

The DFT contrasts with other prominent approaches to change detection in that guessing

does not explicitly factor into our account of errors. For example, many models assume that,

on trials where no change is detected and the set size exceeds capacity, participants generate

a response by randomly guessing (e.g., Pashler, 1988; Rouder, Morey, Morey, & Cowan,

2011; Wei, Wang, & Wang, 2012). By contrast, responses in our model are always driven

by activation of the same and different neurons, which results from the dynamic interactions

between the neurons as they receive projections from WM and CF, respectively. Although

the notion of guessing has intuitive appeal, and participants’ confidence in their responses

surely varies across trials, the current implementation of decisions in the DFT avoids the

need to posit metacognitive processes that would be necessary to generate a guess. For

example, to implement guessing in the model, some component would be needed to monitor

WM to determine whether all of the items were present, and then select a response at

random at test if any items were missing. Including such a mechanism in the model would

be possible in principle, but the close correspondence between the model simulations and

behavioral data suggests that this is not necessary. We are not arguing guessing never occurs

in the behavioral task. To the best of our knowledge, there exists no definitive evidence

regarding the prevalence of guessing and/or the normative form that guessing takes. Thus,

whether some form of guessing needs to be added to the model is, at present, an open

question.

2.2.3. Capacity limits in the DFT—A critical component of the debate between slot and

resource accounts of VWM is whether there is truly a limit on the number of representations

that can be held in VWM, or whether insufficient resolution merely gives the appearance of

capacity limits at higher set sizes (see Table 1). On this particular issue, the DFT provides an
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alternative to these two views, in that the total number of items is limited but not fixed. This

can be seen in Figure 5, which shows the number of peaks that were present in WM at the

end of the delay in each trial of the quantitative simulations described above. Two important

points should be noted. First, the number of items being held in WM was somewhat higher

than the capacity estimated using Pashler’s (1988) formula for calculating k, with an average

of 5.79 peaks at SS6 producing an estimated k of just 4.64 items. Thus, the model must hold

5-6 items in memory in order to generate a capacity estimate between 4 and 5 items. This

result highlights the importance of considering the processes underlying VWM, not just the

representations: errors may still arise on trials in which all of the items were held in

memory.

This leads to the second notable point from our simulations, that the number of peaks

maintained across trials varied systematically by response type (see separate bars in Figure

5). For set sizes three and above, we found that fewer peaks were present in WM at the end

of the delay on false alarm trials—that is, on trials in which the model incorrectly generated

a different response. By contrast, the highest average number of peaks was present on miss

trials, in which the model incorrectly generated a same response. This contrasts with the

assumptions underlying commonly-used approaches to estimating capacity (see Table 1). As

can be seen in Figure 5, for set sizes one and two, all of the array items were held in memory

for each response type, demonstrating that errors can arise even when all items have been

successfully stored. At higher set sizes, the number of items maintained was frequently less

than the set size. A clearer picture of the effect of forgetting on performance can be seen in

Table 3, which shows the frequency of each response type when either all of the items were

remembered, or when the number of peaks present at the end of the delay was either one or

two items lower than the set size. As can be seen, misses (and correct rejections) were most

likely when all of the items were held in memory, whereas false alarms (and hits) were most

likely to occur when at least one of the items failed to be consolidated and maintained in

WM. This suggests that errors in change detection do not arise solely from the number or

resolution of items held in memory, but also through the comparison and decision processes

(as previously suggested by Mitroff, Simons, & Levin, 2004).

The simulations described above suggest that, although the number of items in WM at the

end of the delay was less than set size on some trials, in many cases, nearly all of the items

were maintained. A critical question is whether this holds true for set sizes greater than six.

To explore capacity limits in the model further, we assessed the model’s performance at

higher set sizes across a series of 250 separate simulations, corresponding to 20 participants

in a change detection task. Overall, these simulations revealed that, as the set-size was

increased beyond 6 items, the model’s performance declined from 78.8% correct in SS6 to

71.88% in SS7 and 63.75% in SS8. To illustrate the role that forgetting may have played in

increasing the occurrence of errors, Figure 6 shows the pattern of activation in the WM layer

at different points in a set of representative trials when five, six, seven, or eight inputs were

presented.

As can be seen in Figure 6, when five items were presented (top row), four peaks were

formed and a fifth had begun to form within ~250 ms; although this fifth peak remained

relatively weak, all five peaks were sustained throughout the delay. The next row of Figure 6

Johnson et al. Page 9

Atten Percept Psychophys. Author manuscript; available in PMC 2015 August 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



shows a set size six trial. In this case, only five peaks were able to build in WM and sustain

throughout the delay—one item was forgotten. When seven items were presented (third

row), peaks for six items built within the first 250 ms of the memory array, and a seventh

peak reached threshold by the end of the memory array. However, because this peak was

relatively weak, it was suppressed by inhibition associated with the other items in WM. As a

result, only six peaks remained in WM at the end of the delay. Finally, when eight items

were presented (bottom row), six peaks were formed by the end of the memory array and

were maintained throughout the delay, whereas two items failed to consolidate in WM. Our

simulations demonstrate how the capacity of the DFT is limited to, at most, 5-6 items, but

that the number of peaks maintained is not fixed (for complementary analysis of capacity in

a model with similar dynamics, see Edin et al., 2009). The time-dependent nature of peak

formation may seem to suggest that capacity can be increased arbitrarily by lengthening the

memory array duration. This is not the case: at some point, inhibition from the other items in

WM makes it impossible to maintain more than 5-6 items in WM once input is removed,

regardless of how long the items were presented.

As this figure demonstrates, the relative strength of excitation and inhibition between layers

provides an upper limit on the number of peaks that can be maintained simultaneously in

WM. Thus, capacity limits in the DFT can be attributed to the strength and width of the

Mexican hat function. With weaker interactions, the capacity of the model is decreased (see

Section 3.3 below for discussion of how this type of parameter change can capture

developmental improvements in VWM). Critically, however, the performance of the model

is not influenced solely by the number of items in WM, as described in the following

section.

2.2.4. Other contributions to errors in the DFT—To conclude this subsection, we

revisit the question of where errors come from in the model. In our analysis of this issue (see

Section 2.2.2), we suggested that errors are most likely to occur when either a) one or more

items have failed to be consolidated or maintained in WM throughout the delay interval,

increasing the likelihood of a false alarm, or b) WM is full, and as a result, inhibition

projects broadly back to CF, making it difficult for a peak to build in that layer when a

change occurs at test and increasing the likelihood of a miss. Note that these two

explanations align roughly with slots and resource accounts, respectively; this is how the

DFT is able to capture many of the same empirical phenomena that support one or the other

of those theories within a single framework (see further discussion in Section 3.1). The exact

number of peaks held in WM on a given trial is partly influenced by random fluctuations of

activation (i.e., noise). Noise within the fields may increase the excitation or inhibition at a

given color value, which can bias nearby peaks toward an on or off state, respectively. In

addition to noise, there are more systematic influences on activation and inhibition related to

the items being held in WM. Specifically, our simulations revealed that errors could occur

on trials in which no items were forgotten and WM was not full to capacity. For example, in

Section 2.2.2 we described a set size four trial that resulted in a miss response even though

all of the items were successfully remembered throughout the delay, and set size was below

the maximum number of peaks that can be simultaneously maintained in WM. In this case,

one item changed to a color that fell in-between the colors of two other items that were
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being held in WM. Because these colors were relatively close together in color space, the

inhibition associated with each peak in WM was overlapping, producing a region of

relatively strong inhibition between these two color values in CF (see pattern of inhibition in

CF in Figure 4). As a consequence, the test input failed to generate a peak of sufficient

strength in CF to drive a different response.

The false alarm trial shown in Figure 4 illustrated another potential consequence of metric

interactions in WM, in which a peak “died out” during the delay due to strong inhibition

from neighboring peaks. These simulations lead to a novel prediction that we can evaluate

with our own behavioral data—that the metric relationship between the items in WM will

influence which items are stored, and by extension, will have a measureable effect on

performance. Although our task was not specifically designed to test this prediction, we

evaluated it by calculating an approximate similarity metric between the items in the

memory array on each trial, and comparing response types based on item similarity.2 To do

this, we ordered the stimuli in each memory array by similarity and calculated the number of

“steps” between nearest neighboring items, such that two neighboring colors (e.g., cyan and

blue) would have one step between them, colors separated by one other color would have

two steps, and so on for each additional color. We then computed the mean distance between

items for set sizes two through six. Note that the minimum mean distance score for any set

size is one, corresponding to a trial where all colors are no more than one color step away

from their nearest neighbor. Given that there were nine possible colors used in behavioral

experiments, the maximum possible distance between two colors is 4, but with each

additional item added to the array, the mean distance score necessarily decreases. Collapsing

across trial types, the mean distance scores across set sizes two through six were,

respectively, 2.53, 1.95, 1.65, 1.41, and 1.25 steps.

Figure 7 shows the proportion of correct versus incorrect responses on no-change (Figure

7A) and change (Figure 7B) trials as a function of the mean distance between items in the

memory array, collapsed across set sizes two through six. Because stimuli were selected

randomly on every trial, and higher mean distances were only possible at lower set sizes,

there were large variations in the numbers of trials that yielded each possible mean; as such,

we combined roughly equal numbers of trials to arrive at the bins specified along the x-axis

(note that 1900 trials contributed to each panel—19 participants each completed 20 no-

change trials and 20 change trials in each of these 5 set sizes). As this figure shows, errors

were more likely when the mean distance was small, that is, when items in the memory

array were more similar to one another. We also considered how the similarity between the

memory array items and the novel test color on change trials influenced performance. Figure

7C shows the percent of change trials that resulted in hits or misses, this time as a function

of the mean distance between the changed color and the items in the memory array. Again,

smaller distances (more similarity) led to more errors, as predicted by the DFT. Although

these results are consistent with the model’s performance, this prediction warrants further

testing because it was not an explicit goal of the current experiment, but rather was tested

post hoc.

2We constructed this metric of similarity by asking 10 adults to order the nine colors by similarity, then taking the modal ordering:
black, blue, cyan, green, yellow, white, violet, red, brown (wrapping back to black). See Appendix for RGB values.
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Note that these results contrast with the findings of Johnson and colleagues (Johnson,

Spencer, Luck, et al., 2009; Lin & Luck, 2009), who observed a similarity-based

enhancement of change detection performance in two separate experiments exploring

memory for colors and memory for orientation. In contrast to the present study, in which we

derived the prediction of a similarity-based increase in false alarms from the model’s

performance after fitting it to our behavioral data, the enhancement effect observed by

Johnson et al. was an a priori prediction derived from a systematic exploration of the effects

on change detection of different metric separations between inputs (Johnson & Spencer,

unpublished observations). Specifically, at very close separations, two peaks in WM nearly

always fused (combining into a single peak at an average color) or one peak “killed” the

other. At slightly larger separations, mutual inhibition produces a sharpening and a reduction

in the amplitude of each peak, weakening and narrowing the inhibitory projection to CF, and

allowing relatively small changes to be detected more readily. With even larger separations,

the peaks are less affected by the metrically-specific lateral inhibition associated with the

other peak and more influence comes from global inhibition (see Appendix). Global

inhibition limits the total number of peaks that can be held in WM, and combined effects of

lateral inhibition will make some peaks more likely to “die out” than others (cf. Figure 4).

Thus, metric interactions between nearby items may enhance or disrupt performance under

different circumstances in the DFT.

In a related model, Wei, Wang, and Wang (2012) proposed a form of primarily excitatory

interaction as one of the main causes of errors in change detection. Our view differs from

theirs in that merging in our model only occurs at very close separations (i.e., at separations

smaller than those used in most change detection experiments), with primarily inhibitory

interactions predominating at larger separations. For example, at the intermediate

separations shown to produce sharpening of peaks, overlap between the lateral inhibition

profiles of nearby peaks leads to an asymmetry in inhibition, with stronger inhibition in-

between the peaks than on the “outside”. As a consequence, the peaks move away from each

other over the delay period—they are “repelled” from each other. Importantly, this

postulated form of neural interaction leaves a behavioral signature that can be detected using

recall working memory tasks (see Johnson, Dineva, & Spencer, 2013, and Section 3.1).

Taken together, the results and simulations described in this section highlight that, although

individual items are represented as discrete peaks in WM, they are not stored independently

but rather interact in systematic ways that can impact performance. This unique feature of

the DFT contrasts with the assumption underlying the discrete slots perspective, that items

are stored independently in working memory (see Table 1); similarly, no such provisions for

neural interactions of this sort are provided by the resource perspective, although high item

similarity could be expected to produce interference by this view (Wilken & Ma, 2004).

Furthermore, several of the consequences arising from high item similarity considered here

only become evident through the comparison and decision processes in the DFT—other

theories and models do not explicitly address these processes.

As with slot and resource models, failures in the encoding or consolidation processes

contribute to errors in the DFT. Behavioral studies of the rate of consolidation in VWM

have suggested that encoding occurs more slowly as set size increases (Vogel, Woodman, &
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Luck, 2006), which can result in the failure to encode one or more items when the display

duration is relatively short. We examined this characteristic of the model by plotting the

mean above-threshold activation (averaged across trials and runs of the model) in WM

during the presentation of the memory array. Figure 8 shows the mean activation across set

sizes during encoding (8A) and the delay period (8B). As Figure 8A shows, the rise time of

activation per item increased as additional items were added to the memory display, but only

to a point: the total amount of activation was similar for SS3 and above, despite the

increased number of items. Thus, consolidation occurred more slowly per item with more

items, as seen in behavioral studies (Vogel et al., 2006). In the DFT this occurs as a result of

increasing inhibition with greater numbers of inputs, which slows down the overall increase

in excitatory activation necessary to sustain peaks.

The same pattern can be seen in activation in WM during the delay period: the amount of

activation increased as the number of items increased, but not linearly (Figure 8B). Although

there is not a direct correspondence between activation in the WM field of the DFT and

specific neural measures, this pattern is generally consistent with fMRI and EEG data

showing a correspondence between neural activity and capacity limits in change detection

(e.g., Todd & Marois, 2004, 2005; Vogel, McCollough, & Machizawa, 2005). This feature

of the model contrasts with other recent approaches that attempt to reconcile slots and

resource views of working memory, by positing that the total amount of above- threshold

excitatory activation is akin to a continuous resource that remains roughly constant across

set size (see, e.g., Wei et al., 2012, and discussion below).

2.3. Comparison to slot- and resource-based approaches to change detection

We conclude this section by considering the similarities and differences between our

approach and the discrete slot and continuous resource models. Table 1 summarized the

contrasts between approaches; we will briefly discuss each in turn here. A central contrast

between approaches is in how items are encoded: slots theories posit discrete, all-or-none

encoding whereas resource models assume continuous encoding, with a gradual

accumulation of information over time, allowing for the partial representation of a

potentially very large number of items. In the DFT, encoding occurs when input is

sufficiently strong and enduring to produce a self-sustaining peak in the WM layer (for

further discussion, see Johnson, Spencer, & Schöner, 2009). This involves a discrete

transition—known as a bifurcation in Dynamic Systems Theory (Braun, 1994)—from an

“off” state, characterized by graded subthreshold patterns of activation, to an “on” state in

which locally excitatory interactions among similarly-tuned neurons are engaged. Thus,

peaks are either stabilized in an above-threshold activation state or they relax back to the

neuronal resting level. They do, in fact, have a discrete, all-or-nothing character.

According to slots theories, the capacity of VWM is limited to a small number of high

resolution representations, which is more or less fixed within a given participant (but see

Kundu, Sutterer, Emrich, & Postle, 2013, for evidence that capacity can be increased

through particular types of training). Resource models, by contrast, posit that the number of

representations that can be maintained is essentially unlimited, although only a small

number can be represented with high precision. In the DFT, there is an upper limit on the
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number of peaks that can be sustained in WM; however, the total number of peaks

maintained is not fixed, but varies from trial to trial depending on stochastic processes (i.e.,

noise), and more systematic influences, such as the metric separation between maintained

items.

The DFT differs from the classic form of the slots view in that items are not encoded and

maintained with perfect fidelity (see Table 1). Instead, each item is represented as a noisy

population vector of activation occupying a unique position within a continuous feature

space. In this sense, the DFT is more similar to resource models; although such models have

not been explicitly implemented in a neural framework, the underlying assumption is that

individual items are represented as noisy population codes, with the amount of noise (i.e.,

variance) associated with each item increasing as limited resources are spread out among

larger numbers of items (Bays, Catalao, & Husain, 2009; Bays & Husain, 2008, 2009).

However, we are unaware of any implemented population coding model that captures multi-

item VWM in the manner described by proponents of the resource view (Ma & Huang,

2009). Indeed, until quite recently, the majority of models in this class that have addressed

working memory have focused on memory for single spatial locations (Camperi & Wang,

1998; Compte et al., 2000). Achieving multi-item working memory in such models has

proven to be a challenge because this requires a delicate balance between excitation and

inhibition (Trappenberg, 2003). With too little inhibition (or when excitation is too broad),

peaks have a strong tendency to merge, making it difficult for unique peaks of activation to

be formed and maintained (discussed above; see also Wei et al., 2012). Conversely, if

inhibition is too strong, only a single peak can be maintained at a time, which is inconsistent

with capacity estimates obtained from behavioral experiments. Thus, the same neural

dynamics that make it possible to maintain multiple neural representations at one time in

these models (locally excitatory recurrence together with broad inhibition) also give rise to

capacity limits at higher set sizes. As a result, a plausible neural basis for the unlimited

capacity WM proposed by proponents of the resource view remains unclear.

This difficulty is demonstrated in a recent model developed by Wei and colleagues (2012),

which attempts to reconcile the slots and resource views of WM. In their model, the strength

of excitatory and inhibitory interactions among neurons supporting maintenance are tuned

such that the total number of activated neurons during the delay remains more or less

constant (i.e., continuous) across set sizes. This mode of functioning is in keeping with the

conceptualization of WM as a continuous resource that is divided up evenly among the

items in memory, with less and less resource available for each item as set size increases.

However, they also show that the capacity of the model is strictly limited as peaks of

activation representing items in WM either fade out (as a result of increased competition) or

merge together (due to overlapping excitation) as set size increases. Thus, although some

aspects of the model’s functioning are consistent with the resource view, others are not.

Additionally, it is difficult to see how this model, or the resource view more generally, could

capture findings from neural recording studies of WM showing that, rather than remaining

constant, activation during the delay interval steadily increases with increasing set size,

leveling off at an individual’s capacity (e.g., Todd & Marois, 2004, 2005; Vogel et al.,

2005).
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Proponents of slots theories have proposed an alternate neural implementation of a limited

capacity working memory system to the one described here. In this model, each item is

actively stored by a separate cell assembly that fires synchronously in the gamma band

frequency range and out of phase with cell assemblies representing other items (Lisman &

Idiart, 1995; Raffone & Wolters, 2001). Capacity limits arise when the number of items to

be maintained exceeds the number of distinct phases available. In addition, the ability to

maintain separate sustained oscillatory states can be influenced by noise, item similarity, and

other factors that have been shown to influence performance in the DFT and neural

population coding models more generally. Although this is a promising explanation, to date

there is little direct evidence supporting this proposal (see discussion in Fukuda, Awh, &

Vogel, 2010). Additionally, though maintaining multiple highly similar items might produce

interference among representations, it is unclear whether such a temporal coding model

could accommodate the various kinds of metric interactions our work has uncovered.

The most notable difference between the DFT and slot and resource accounts is that only the

DFT includes specific mechanisms underlying the comparison and decision processes

required in change detection. Even in neural implementations of slot models (e.g., Raffone

& Wolters, 2001), or in what could be considered hybrid slot/resource models (e.g., Edin et

al., 2009; Wei et al., 2012), the comparison and decision processes are not explicitly

implemented. As our simulations demonstrated, however, the process of translating a

memory representation into a behavioral response introduces the potential for errors, which

brings us to the final contrast among theories: the source of errors in the change detection

task. The “classic” slots accounts were admittedly simple, attributing all errors to items not

being held in memory. More recent variations of slot models, however, provide a richer set

of hypotheses to account for performance in change detection, including insufficient

resolution to detect small changes (see discussion in Awh, Barton, & Vogel, 2007), or lapses

in attention (Rouder et al., 2008, 2011), in addition to failures of encoding or maintenance.

The primary source of errors in the resource models, by contrast, is limited resolution, which

makes decisions more prone to error as set size increases (Wilken & Ma, 2004). In the DFT,

errors can arise through any of the processes involved in the change detection task, and are

not solely, or even primarily, attributable to failures of memory (cf. Mitroff et al., 2004).

Adopting a process-oriented approach to VWM, in which the proposed mechanisms

underlying performance are explicitly implemented in a formal model, affords the

opportunity to explore additional sources of errors that may not be evident in other

approaches that focus primarily on characterizing the representations underlying VWM.

Importantly, the potential sources of errors suggested by our model are not simply

theoretical curiosities, but have led to testable predictions that have been confirmed in

behavioral and neuroimaging experiments, as we describe in the next section.

3. Beyond change detection

Thus far, our discussion has focused exclusively on modeling the change detection task in

adults. In this section, we consider how the model can be used to address performance in

other tasks used to measure VWM in the laboratory, and in age groups other than adults.

First, we describe a DFT approach to modeling cued recall, which has overtaken the change

detection task as the primary paradigm used to study VWM. Next, we describe recent
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extensions of this architecture that incorporate higher dimensional representations, attention,

and sequence learning. These additions make it possible to capture performance in several

other tasks that are widely used to measure VWM. In a final section, we consider how the

model can account for the development of visuospatial working memory.

3.1. Recall tasks probing VWM

Much of the current debate between proponents of slots and resource views focuses on

performance in recall, rather than change detection, VWM tasks. The recall task is identical

to the change detection task, with the exception that, instead of making a same/different

decision in response to a test array, observers are cued to report a particular attribute of a

remembered stimulus (e.g., its color) by, for example, clicking on the region of a color

wheel that matches the remembered attribute. Although the primary focus of the present

paper has been change detection, the majority of previous work applying the DFT to

working memory has addressed spatial recall (Simmering, Schutte, & Spencer, 2008;

Spencer et al., 2007). As a result, adapting the model described in Section 2 to recall studies

of VWM is fairly straightforward. Recall that the basic units of representation within the

DFT are localized peaks of activation, whose center of mass can be taken as an estimate of

the particular stimulus value(s) (e.g. hue, orientation, spatial location) represented by the

neural system at a particular moment in time. Thus, a simple means of deriving simulated

recall data from the model is to present it with one or more inputs followed by an unfilled

delay, as in change detection, and then read out the position of each distinct peak that is

present in WM at a specified point in time after the end of the delay. The simulated response

distributions can then be used to estimate the capacity, accuracy and precision of peaks in

WM in the same way that recall responses are used to estimate these parameters from

behavioral data (as in, e.g., Bays, Catalao, & Husain, 2009; Zhang & Luck, 2008).

Using this method, Johnson and colleagues (Johnson et al., 2013; Johnson, 2008) used the

DFT to derive a novel prediction that was confirmed behaviorally: that neural interactions

between nearby peaks in WM would produce similarity-based feature repulsion (see

discussion in Section 2.2.4). Additionally, model simulations and behavioral data revealed a

decrease in precision when one item versus three items were retained in WM, in keeping

with previous findings (see, e.g., Zhang & Luck, 2008). Note that the method of deriving

recall data from the model simplifies the generation of responses in the recall task, in which

participants are typically required to map the color they are holding in memory onto a

spatially distributed representation of the color space. That is, generating the response

requires the integration of spatial and non-spatial dimensions. One means of achieving this

is to couple the one-dimensional color WM field to a two-dimensional colorspace response

field (spanning, e.g., 360° of color and 360° of polar angle), which makes it possible to map

activation in WM onto a feature-space representation of the color wheel (see Section 3.3 for

further discussion of the use of higher dimensional fields to represent conjunctions of

features and spatial locations). In principle, the DFT is in a position to capture all of the

necessary processes required to perform the recall task, from the encoding and maintenance

of individual colors, to the generation of a spatially localized recall response. Formally

implementing the processes underlying both recall and change detection in the same
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architecture may provide a more direct means of assessing the connection between

performance in these tasks than is possible with current slots and resource models.

3.2. Expanded model architecture

Although the three-layer architecture described in Section 2 has been used to capture

performance in spatial cognition and VWM tasks in children and adults (see Johnson &

Simmering, in press; Simmering & Schutte, in press, for review), it is still limited in the

extent to which it has been applied to many of the well-documented empirical phenomena in

VWM research. To remedy this, we have been working with a group of colleagues to

expand the model architecture to incorporate a wider array of cognitive processes (see

Schöner & Spencer, in press, for review). The full range of applications of this expanded

architecture is beyond the scope of this paper, but we will briefly highlight the examples that

apply most directly to VWM research here.

One limitation of the three-layer architecture described above is that it only captures WM

for single features (i.e. the colors of the items), not their locations or other visual attributes;

similarly, spatial versions of the model only capture the spatial locations of objects and no

other visual features. The expanded DFT architecture addresses this limitation by

incorporating higher dimensional representations in which activation in a single field can

span different dimensions, such as a spatial dimension and a metric feature like orientation,

direction of motion, or hue. Representations of this sort are ubiquitous throughout many

cortical areas. Most notably, neurons in the early visual system are known to form a

population code over the two dimensional space of stimulus positions on the retina.

Importantly, many of these neurons also respond to particular visual features, like edge

orientation, spatial frequency, movement direction, or hue (see, e.g., Blasdel, 1992; Hubel &

Wiesel, 1959; Issa, Trepel, & Stryker, 2000; Livingstone & Hubel, 1988). The DFT uses

these kinds of visual representations to capture the integration of spatial and non-spatial

dimensions in VWM. For instance, using a simplified one-dimensional representation of

space (capturing, e,g., the position of a stimulus relative to fixation in polar coordinates),

Johnson, Spencer, and Schöner (2008) showed how feature-location integration could be

realized by combining separate one-dimensional architectures for individual features (color,

space, etc.), and two-dimensional fields that localize features in space. In this type of

architecture, the two-dimensional color-space WM field receives input from color WM

along one dimension and spatial WM along the second dimension; where these inputs

intersect specifies the spatial location of the color in the visual scene (see Schneegans,

Spencer, & Schöner, in press, for further details).

To represent multi-feature objects, individual feature dimensions (orientation, hue, etc.) are

represented in separate two-dimensional feature-space fields. The separate feature

dimensions can then be bound across the shared spatial dimension through reciprocal

connectivity with a single field representing the spatial locations of a limited number of

encoded objects (see Simmering, Miller, & Bohache, 2013, for further discussion in the

context of change detection). In the simplest case, in which one multi-featured object is

present in the visual field, input from the one-dimensional feature and space fields would

uniquely specify the location of the object and each of its associated features. However, in
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more realistic situations, in which multiple objects are simultaneously present in the visual

field, a problem can arise in which the features of different objects are incorrectly combined;

a variant of the well-known “binding problem” (Treisman, 1996; von der Malsburg, 1981).

One proposed solution to this problem is to process individual items in a sequential fashion

(Treisman & Gelade, 1980). To achieve this, another component needed to be added to the

model: visuospatial attention. Specifically, in addition to the two-dimensional WM fields

and their associated Contrast Fields, this architecture includes both one- and two-

dimensional Attention Fields. These fields include local excitatory interactions paired with

global inhibition such that peaks are self-stabilized but not self-sustaining (i.e., activation

returns to resting level when input is removed), and only a single peak can rise above-

threshold at any given time. Attention Fields are reciprocally coupled with both CF and WM

in the respective architectures (i.e., one- versus two-dimensional). The function of these

fields is to serially attend to items within the visual scene, thereby reducing the likelihood of

mis-binding features across different objects. The addition of an explicit attentional

mechanism to the DFT architecture allows for further comparison with other models of

VWM that emphasize the role of attention in capacity limits (e.g., Cowan & Rouder, 2009).

Additionally, as discussed further below, reciprocal coupling between WM, CF, and the

Attention Fields makes it possible to capture behavioral performance in tasks other than

change detection.

Before considering the application of the expanded model to other WM tasks, we briefly

consider its ability to capture findings related to the storage of multi-feature objects in

VWM. Behavioral studies have shown that both children (Riggs, Simpson, & Potts, 2011;

Simmering et al., 2013) and adults (e.g., Luck & Vogel, 1997) have comparable capacity

estimates for single- versus multi-feature objects, suggesting that VWM capacity is limited

by the number of objects rather than the number of features (for important qualifications of

these findings, see Oberauer & Eichenberger, 2013; Olson & Jiang, 2002; Wheeler &

Treisman, 2002). In the expanded DFT, this limited number of objects would arise through

similar mechanisms as those that limit capacity in the three-layer DFT (described in section

2.2.3). In particular, the balance between excitation and inhibition would limit the number of

peaks that could be maintained in each of the WM fields—not only in the onedimensional

fields (e.g., hue, orientation, space) but also in the two-dimensional fields (e.g., color-space,

orientation-space, etc.). Within the expanded architecture, capacity would ultimately be

limited by the number of distinct peaks that could be maintained in the spatial field that each

of the 2D feature-space fields is coupled with. Thus, although it would be possible to

represent 3-5 multi-feature objects (e.g., 4 colored oriented bars at different locations), it

would not be possible to maintain four colors and four orientations at different locations

(i.e., eight single-feature objects) because this would exceed the capacity of the spatial field.

Thus, it seems plausible that the extended model could accommodate the “object benefits”

observed in studies of VWM. However, the implementation of feature binding in the DFT

architecture described here has only been tested qualitatively; further tests will be needed to

see if this mechanism can quantitatively capture behavioral data requiring memory for

multi-feature objects and generate novel predictions.

The expanded model was designed, in part, to account for the proposed close relationship

between the storage function of VWM and the control of visual attention (Desimone &
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Duncan, 1995; Desimone, 1996). One piece of evidence supporting this proposal is the

observation that saccadic eye movements to visual targets can be modulated by the

relationship between the target stimuli and the contents of VWM. Specifically,

Hollingworth, Matsukura, and Luck (2013) showed that saccades to targets matching the

contents of VWM were generated more rapidly and landed closer to the center of the target

than saccades to non-matching objects. In the model, the proposed interaction between WM

and perceptual processes arises as a result of excitatory coupling between the WM field and

the Attention Field, which biases attention (and thereby the oculomotor system) towards

targets that share features with items being maintained in WM. A similar mechanism could

be used to capture performance in other tasks that require the selection of targets that match

the contents of VWM (as opposed to detecting nonmatching items, as in change detection),

such as visual search, a widely used measure of attention, or the delayed match-to-sample

task, a widely used measure of VWM in humans and non-human primates. A full

consideration of how the model can be applied to each of these tasks is beyond the scope of

the present work. For in-depth discussion of these issues, including the use of dynamic

neural fields to capture multi-feature objects, attention, performance in visual search and

other tasks used to probe the relationship between attention and working memory, the reader

is directed to Schneegans, Lins, and Spencer (in press), and Schneegans, Spencer, and

Schöner (in press).

To conclude this section, we briefly consider additional extensions of the DFT that make it

possible to capture performance in more complex tasks than have been considered thus far.

One important goal within working memory research more generally is to understand how it

relates to higher-level cognitive abilities, such as general fluid intelligence. Many studies

that demonstrate links between working memory and such highlevel skills use more

complex tasks than the visual change detection paradigm discussed here. As an example,

consider the n-back task: in this task, participants are required to monitor a sequence of

stimuli and press a response key when the current stimulus matches the item that appeared n

items previously in the sequence. This task is reliably correlated with fluid intelligence, and

some studies have shown that training on n-back improves performance on measures of

intelligence (Jaeggi, Buschkeuhl, Jonides, & Perrig, 2008; but see Chooi & Thompson,

2012; Redick et al., 2013), suggesting it is an important task to understand.

In order to perform the n-back task, a few additional modifications to the extended model

described above would be needed. Most importantly, the model would need to incorporate

information about the order of item presentation: to evaluate whether the appropriate two

stimuli match, knowing the number of intervening items in the sequence is vital. More

generally, the ability to represent sequential information and to generate sequentially

ordered actions plays a critical role in even the simplest activities. To address this important

issue, Sandamirskaya and colleagues (Sandamirskaya & Schöner, 2010; Sandamirskaya,

Zibner, Schneegans, & Schöner, 2013; Sandamirskaya, in press) developed a system for

sequence learning and generation. Briefly, the proposed system includes three separate

components: a neural representation of seriality itself in which activation is defined over an

abstract dimension, the “ordinal” axis along which the serial order of actions is represented;

an intention field, in which activation is defined over relevant motor, perceptual, or
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cognitive dimensions (akin to the continuous neural fields described above); and a neural

representation of the condition-of-satisfaction, whose activity reflects the match between the

state that corresponds to the fulfillment of the current intention and the perceived state of the

environment or the agent. With these additions, Sandamirskaya and Schöner demonstrated

that a robotic agent could learn to perform a sequence of actions (e.g., visiting a series of

colored blocks in a specific order).

The robotic implementation of the model described above provides a compelling proof of

concept, demonstrating the feasibility of representing ordinal position in the DFT

framework, a key requirement of capturing performance in more complex working memory

tasks such as n-back. With the sequential information encoded, the next step in modeling

behavior in this task would be to compare the current item to the item from the appropriate

ordinal position in the sequence. This could be done in the same manner in which the three-

layer DFT compares the memory and test arrays in the change detection task and generates a

same/different decision (described in section 2.2). The comparison and decision required in

n-back tasks is essentially a single-item change detection trial: does the current item match

the item at the appropriate ordinal position in memory or not? The response nodes could be

modified such that a response is only generated for a same decision by, for example,

decreasing the resting level of the different neuron from the change detection model.

Although this application to the n-back task is only hypothetical at this point, and would

need to be tested to determine whether it could indeed capture behavioral results from that

task, this section demonstrates the utility of a process-based model in extrapolating to other

cognitive tasks.

3.3. Cognitive development

A final component that separates the DFT from most other accounts of VWM is that it

focuses on developmental change in memory and performance (see Simmering & Schutte, in

press, for review). The developmental mechanism implemented in the DFT—the Spatial

Precision Hypothesis—extends from previous work in spatial cognition, which has captured

developmental changes in spatial recall and position discrimination, including the influences

of reference frames and long-term memory. According to this hypothesis, neural interactions

strengthen over development (Perone, Simmering, & Spencer, 2011; Perone & Spencer, in

press, 2013; Schutte, Spencer, & Schöner, 2003; Schutte & Spencer, 2009; Simmering et al.,

2013, 2008; Simmering & Patterson, 2012; Simmering, 2013; Spencer et al., 2007; cf. Edin,

Macoveanu, Olesen, Tegner, & Klingberg, 2007). This increase in excitation and inhibition

leads to peaks that increase in strength, stability, and precision over development.

The spatial precision hypothesis can account for increased capacity estimates from change

detection observed between 3 and 7 years of age (Simmering et al., 2013; Simmering, 2013).

Simulations showed that the number of peaks held in WM increases over development, but

this change alone is not sufficient to account for children’s performance. In addition,

quantitative fits required changes in the decision system, such that younger children were

more likely to respond “same” in the task. The same underlying memory system has also

been linked with a fixation system to capture infants’ and young children’s performance in a
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preferential looking paradigm developed to measure VWM capacity (Perone et al., 2011;

Simmering, 2008, 2013).

Using the parameters that captured the developmental trajectory in both change detection

and preferential looking tasks between 3 and 5 years, Simmering and Patterson (2012)

generated novel predictions of developmental improvements in the precision of VWM,

which were supported by children’s performance in a color discrimination task. Compared

to other models of VWM capacity in adults, the DFT has generalized across a wider range of

behavioral tasks, and has accounted for developmental changes in these tasks through

improvements in the underlying memory system and the behavioral response systems. These

applications of the DFT to VWM follow extensive work showing how this developmental

process captures multiple types of change in spatial cognition, including the A-not-B error

(Simmering et al., 2008), position discrimination (Simmering & Spencer, 2008), and recall

biases arising from long-term memory (Schutte et al., 2003) and reference frames (Schutte

& Spencer, 2009).

Beyond visuospatial memory tasks, similar dynamic neural field architectures have also

been used to account for a variety of cognitive development processes. For example, Buss

and Spencer (in press) developed a multi-layered architecture of dynamic neural fields to

perform the dimensional change card sort task, in which young children (typically 3-year-

olds) have difficulty shifting rules used to sort cards. In their model, Buss and Spencer

approximated executive control through the process of boosting the resting levels in the

neural fields that represent the different dimensions of the cards (e.g., shape versus color)

used to generate the sorting rules. Through simple, quantitative changes in the magnitude of

these boosts over development, they successfully captured performance across a variety of

different conditions in this task. Samuelson, Schutte, and Horst (2009) applied a dynamic

neural field architecture to word learning tasks, and showed that changing input strength for

different object characteristics (e.g., shape versus material) captured children’s performance

on multiple novel noun generalization tasks. Finally, Perone and Spencer (in press, 2013)

have shown how a dynamic neural field architecture can explain developmental changes in

infants’ looking behavior in both habituation and paired comparison tasks through changes

in neural interactions in memory and looking dynamics. As these examples demonstrate, a

model like the DFT has broad application across behavioral tasks, cognitive domains, and

developmental periods.

3.4 Remaining challenges

Although the DFT framework has been applied to a wide variety of phenomena related to

VWM, a number of important challenges remain. In this final section, we discuss two such

challenges, which we view as especially important: the development of a DFT approach to

individual differences in working memory, and clarification of the relationship between the

model’s behavior and the neural processes underlying performance. Ongoing efforts to

address each of these challenges are discussed in the sections that follow.

3.4.1 Individual differences in working memory—As noted above, working memory

capacity has been closely related to other important cognitive functions and to general fluid
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intelligence (Baddeley, 1986; Cowan et al., 2005; Engle et al., 1999; Jonides, 1995; Just &

Carpenter, 1992) in addition to deficits observed in psychiatric populations (Keefe, 2000).

This relationship provides a compelling motivation for the study of working memory in

general, and the underlying factors influencing capacity in particular. Thus, one important

goal for future work within the DFT framework is the development of an explicit account of

individual differences in working memory. There are a number of ways in which individual

differences could be implemented in the DFT. In the simulations presented here, average

performance and variation were captured across separate runs of the model, which served as

a proxy for individual subjects. However, the parameters of the model were identical across

each run; thus any variation in the model’s performance across runs arose solely through

noise. Specifically, two forms of noise were used here: spatially-correlated noise within the

fields, and colored noise that influences the resting levels of the fields. Each of these noise

sources impacts performance on a trial-by-trail basis, but variation in resting levels does not

carry over from one trial to the next within a given run of the model (i.e., for a given

“participant”). That is, variation in resting levels in each of the fields is random across trials

and runs. Thus, a first step toward capturing individual differences would be to modify the

model such that small differences in the effective resting levels in the fields carried over

from trial to trial for a given run (see Buss & Spencer, in press, for this type of change

implemented in a similar DFT architecture). Changes in the resting level can have an

important influence on the model’s behavior. Generally speaking, with a lower resting level

stronger input is required to form and maintain stable peaks, whereas with a higher resting

level, the overall activity level within a field is increased. Each of these changes would have

consequences for patterns of activation within a field as well as projections to other fields.

Another approach to individual differences could build from the DFT approach to

development. As described in section 3.3, developmental changes in spatial and visual

working memory have been modeled using the Spatial Precision Hypothesis, in which the

strength of excitatory and inhibitory neural interactions become stronger and more precise

over development. These variations in parameter strengths have previously been used to

simulate relatively large differences in performance between children and adults, but

Simmering (2013) showed that relatively small changes in these parameters produced

enough variation across runs of the model to capture correlations in performance across

VWM tasks. Additionally, Spencer, Perone, and Johnson (2009) described another

consequence of increasing the strength of neural interactions in the model that could factor

into a DFT account of individual differences: greater resistance to noise and the impact of

task-irrelevant distractors on performance. Thus, variation in parameters of this sort could

provide an account of individual differences in capacity, and performance in working

memory tasks more generally.

3.4.2. Relationship between the model and neural processes—As noted above,

the DFT model described here provides a functional neural account of phenomena related to

VWM and change detection. Specifically, we implemented a neurally plausible form of

encoding and maintenance through the sustained activation of feature selective neurons, and

we showed how these can be linked to a plausible comparison and decision process. As

demonstrated in section 2, the resulting model captures behavioral performance in change
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detection tasks, and suggests specific sources for errors. An important remaining challenge

for this framework is to clarify the relationship between the model’s behavior and the neural

processes underlying each response type (see Schöner & Spencer, in press, for discussion).

As a first step in this direction, Buss, Magnotta, Schöner, and Spencer (2013) adopted a

model-based approach to fMRI data (Ashby & Waldschmidt, 2008; Davis, Love, & Preston,

2012; Deco, Rolls, & Horwitz, 2004; White & Poldrack, 2013). A critical component of a

model-based approach to fMRI is to specify a linking hypothesis that states how the

processes in a model map onto the neural process driving the blood-oxygen level dependent

(BOLD) signal. Recent biophysical work has demonstrated that the local field potential

(LFP) is most strongly correlated with the BOLD response (Logothetis, Pauls, Augath,

Trinath, & Oeltermann, 2001). An LFP is a measure of dendritic activity within a local

neural population that accounts for both inhibitory and excitatory ion channels. This

provides a measure of the input to, and local processing within, a given neural region.

Further, a BOLD response can be reconstructed by convolving the LFP with a general

impulse response function that specifies the time-course of the slow changes in blood flow

that occur in response to neural activity. Deco and colleagues (2004) built off of this work to

simulate the neural dynamics of VWM using an integrate-and-fire neural network.

Specifically, they simulated an LFP by summing the absolute value of all ionic channels in

the model that contribute to the rate of change in neural activation.

Buss and colleagues (2013) showed that this same mapping could be used with the DFT by

tracking the absolute value of all excitatory and inhibitory neural interactions over the

course of an experiment. Using a variant of the model architecture described in Section 2,

they clarified the neural processes underlying the four different kinds of responses in the

change detection task. Specifically, Buss and colleagues used the same model to

quantitatively simulate behavioral performance as well as make quantitative predictions

about the BOLD signal. Assessing the data across the four different response types, their

results showed a close correspondence between different components of the model and

particular cortical regions of interest. In particular, the ‘different’ neuron hemodynamics

corresponded to the pattern of data reported from frontal eye field (FEF), the ‘same’ neuron

hemodynamics corresponded to the data reported from parietal cortex, and CF layer

hemodynamics corresponded to the data reported from fusiform cortex. This mapping of

model dynamics to cortical areas suggests that the frontal eye fields (FEF) are involved in

detecting changes when they occur, parietal cortex is involved with spatially orienting to the

changed item, and fusiform cortex is involved with maintaining active representations of

colors in the array.

Thus, although DFT is implemented at the fairly abstract level of neural population

dynamics, this work demonstrates that the DFT can provide a neurally plausible account of

both behavioral and neural imaging data related to change detection. Nonetheless, directly

linking particular components of the proposed model to specific neural processes remains a

central challenge for this perspective going forward.
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4. Conclusions

The goal of this paper was to present a process-based neural model of VWM, the DFT, and

to illustrate how it captures key characteristics of capacity limits, while also contributing to

our understanding of the processes underlying change detection performance. The dominant

models of VWM for the past decade have debated whether representations are best

characterized as ‘slots’ or ‘resources’; although these perspectives have generated and

explained an impressive amount of empirical data, we contend that the field is at a point

where it can benefit from the development of formal process-based approaches to VWM that

can capture behavioral and neuroimaging data using neurally plausible mechanisms. Far

from representing a mere “implementation” of cognitive concepts, such endeavors can

provide rich insights into the processes underlying cognitive phenomena, and can lead to

novel predictions that can be tested behaviorally and using neuroimaging methods such as

fMRI and EEG. In addition to our own work, other models in the same class of neurally-

grounded process models have recently been proposed as a means of reconciling, and

potentially moving beyond, the slots versus resources stalemate (see, e.g., Edin et al., 2009;

Wei et al., 2012). To date, these models have been used to generate novel behavioral

predictions and have been supported by neuroimaging data, suggesting they are poised to

make continued contributions to our understanding of VWM.

Most importantly, and in contrast to these other models, the model we present here is

grounded in a broader context—the DFT has already been applied across a wide range of

behavioral tasks, age groups, and cognitive domains, and it continues to be developed to

incorporate our expanding knowledge of the neural bases of cognition. Linking specific

models within the domain of VWM to broader neurocognitive architectures is critical if we

are to understand the relationship between VWM and the wider perception-cognitionaction

system within which it is embedded.
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Appendix

Change Detection Experiment

Method

Participants—Nineteen University of Iowa undergraduates (12 females) participated in

exchange for course credit. Participants received course credit for their participation. All

reported normal or corrected-to-normal visual acuity and normal color vision.

Apparatus—Stimulus presentation was controlled by a Macintosh G4 computer running

Matlab 5.2 using the Psychophysics Toolbox extensions (Brainard, 1997; Pelli, 1997).
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Stimuli were presented against a gray background (28.73 cd/m2; R = 150, G = 150, B = 150)

at a viewing distance of approximately 60 cm. They consisted of small colored squares (1 in.

× 1 in., subtending approximately 2° × 2°. Nine colors were used for the squares: black (0, 0,

0), brown (164, 42, 42), green (0, 255, 0), cyan (0, 255, 255), blue (0, 0, 255), red (255, 0,

0), violet (238, 130, 238), yellow (255, 0, 0), and white (255, 255, 255). On each trial, the

positions of the squares were randomly determined for the memory array with the constraint

that none could appear within 1.5 in. of the edges of the monitor or other squares (for set

sizes greater than one). The positions of the squares within the test array were identical to

the memory array for each trial. Colors were selected randomly without replacement on

every trial.

Procedure—Each trial began with a blank gray screen for 500 ms, followed by the

memory array presented for 500 ms, a blank delay of 1 s, and the test array, which remained

visible until a response was generated. Participants were instructed to indicate whether the

color(s) within the test array were the same as the memory array, or if one color had

changed; they entered their response on the computer keyboard by pressing “a” for

“different” and “l” for “same” (keys were marked with stickers to help participants

remember the mapping). Accuracy was emphasized over speed, and a short buzz sound was

played following incorrect responses. Participants completed 12 practice trials followed by

240 test trials, 40 each at set sizes one through six, with breaks offered every 24 trials. On

half of the trials (no-change trials), the test array matched the memory array; on the other

half of trials (change trials), one item within the test array had changed to a new color,

selected without replacement from the nine possible colors. Both set size and change type

varied randomly across all trials. To prevent verbal recoding of the memory array colors,

participants were instructed to repeat a randomly-generated three digit number throughout

the experiment. A new number was generated to begin each block.

Results

Participants’ responses were classified as correct rejections, hits, misses, and false alarms

across trials within each set size, as shown with bars in Figure 1B. We also computed

overall percent correct for each set size, shown with the line in Figure 1B. Performance was

near ceiling for small set sizes, with performance declining as set size increased and misses

becoming more common than false alarms. To analyze performance, we conducted a one-

way ANOVA with Set Size (one, two, three, four, five, six) as a within-subjects factor. This

analysis revealed a significant effect of Set Size, F5, 90 = 27.24, p < .001, η2 = .52; follow-

up Tukey HSD tests (p < .05) showed that performance was significantly lower in set size

five than set sizes one and two, and in set size six compared to set sizes one through four; all

other differences were not significant. We also computed capacity (K) for each participant

using Pashler’s (1988) formula, K = SS * (H – FA) / (1 – FA), based on the hit (H) and false

alarm (FA) rates for each set size (SS). Figure A1 shows each participant’s K estimates

across set sizes, along with the mean K across participants. Because K can equal, at most,

the set size for each block, we then selected each participant’s maximum estimate across set

sizes (cf. Olsson & Poom, 2005; Simmering, 2012; Todd & Marois, 2005), to derive Kmax

for each participant. The mean Kmax estimate across participants was 4.58 (SD = .078).
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Figure A1.
Capacity estimates (K) across set sizes (SS) for each participant (colored lines), as well as

the mean across participants (black line).

Model Equations—Activation in the contrast field, CF(u), is captured by:

(1)

where u̇(x,t) is the rate of change of the activation level for each neuron across the spatial

dimension, x, as a function of time, t. The constant τ determines the time scale of the

dynamics (Erlhagen & Schöner, 2002). The first factor that contributes to the rate of change

of activation in CF(u) is the current activation in the field, -u(x,t), at each site x. This

component is negative so that activation changes in the direction of the resting level hu. The

resting level included colored noise, which was determined by the equation τh ḣ(t) = −h(t)

+qh *noise, in which the current resting state is increased or decreased by a random amount

(qh* noise) at each time step; qh was set to 6 and τh was 80. This is termed colored noise

because the value at each time step is partially determined by the value at the previous time

step; this contrasts with white noise, which is independent across time steps.

Next, activation in CF(u) is influenced by the local excitation / lateral inhibition interaction

profile, defined by self-excitatory projections, ∫ cuu (x − x′) Λuu (u (x′, t))dx′, and inhibitory

projections from Inhib(v), ∫ cuv (x − x′) Λuv (v (x′, t))dx′. These projections are defined by

the convolution of a Gaussian kernel with a sigmoidal threshold function. In particular, the

Gaussian kernel is specified by:
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(2)

with strength, c, width, σ, and resting level, k. The sigmoidal function is given by:

(3)

where β is the slope of the sigmoid, that is, the degree to which neurons close to threshold

(i.e., 0) contribute to the activation dynamics. Lower slope values permit graded activation

near threshold to influence performance, while higher slope values ensure that only above-

threshold activation contributes to the activation dynamics. At extreme slope values, the

sigmoid function approaches a step function. For all simulations presented here, β = 0.5.

Inputs to the model take the form of a Gaussian:

(4)

centered at xcenter, with width, σ, and strength, c. These inputs can be turned on and off

through time (e.g., as items appear and then disappear). This time interval is specified by the

pulse function χ(t).

Next, a global input to the field is projected from the different response node (rd) when the

activation of the node is above zero. Lastly, activation within the field is influenced by the

addition of a stochastic component consisting of spatially correlated noise:

(5)

Noise was added to the simulations by convolving a noise field composed of independent

noise sources with a Gaussian kernel specified by:

(6)

where σnoise is the spatial spread of the noise kernel (set to 10 in all simulations). (For

discussion of the differences between spatially correlated noise and Gaussian white noise,

see Schutte et al., 2003).

The second layer of the model, Inhib(v), is specified by the following equation:

(7)
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As before, v̇(x, t) specifies the rate of change of activation across the population of feature-

selective neurons, x, as a function of time, t; the constant τ sets the time scale (note that the

time scale for inhibition is faster than for the excitatory layers, i.e., τv < τu); v(x, t) captures

the current activation of the field; and hv sets the resting level of neurons in the field. As

with CF(u), colored noise was added to the resting level. Inhib(v) receives activation from

two projections: one from CF(u), ∫ cvu (x − x′) Λvu (u(x′, t))dx′; and one from WM(w), ∫ cvw

(x − x′) Λvw (w(x′, t))dx′.

As described above, projections are defined by the convolution of a Gaussian kernel

(Equation 2) with a sigmoidal threshold function (Equation 3). Finally, this field also

receives spatially-correlated noise, as described above. This noise is independent from the

noise sources in the other layers of the model.

The third layer of the model, WM(w), is governed by the following equation:

(8)

Again, ẇ(x, t) is the rate of change of activation across the population of feature-tuned

neurons, x, as a function of time, t; the constant τ sets the time scale; w(x,t) captures the

current activation of the field; and hw sets the resting level. As with CF(u), colored noise

was added to the resting level. WM(w) receives self excitation, ∫ cww (x − x′) Λww (w(x′,

t))dx′, lateral inhibition from Inhib(v), ∫ cwv (x − x′) Λwv (v (x′, t))dx′, and excitatory input

from CF(u), ∫ cwu (x − x′) Λwu (u(x′, t))dx′.

This field also receives direct target inputs, S(x,t), scaled by cs to be weaker (i.e., cs < 1), and

includes spatially-correlated noise as described above. Again, this noise is independent from

the noise sources in the other layers of the model.

The neurons in the response layer are governed by the following equations:

(9)

(10)

The rate of change of each neuron’s activation, ṙ (where the constant τ determines the

timescale and the subscripts d and s denote the different and same neurons, respectively), is

determined by the current activation level, -r, and the resting level of the neuron activation,

hr. Each neuron has a self-excitatory connection, cddΛd(rd) or cssΛs(rs), and receives

inhibition from the other neuron, cdsΛds(rs) or csdΛsd(rd). Additionally, the different neuron

receives summed excitatory input from CF(u), ∫cdu Λu (u(x′, t))dx′, and the same neuron

receives summed excitatory input from WM(w), ∫csw Λw (w(x′, t))dx′.

Activation to the neurons was controlled by a gating system, given by the following

equation, which served as an indication of when a response was required in the task.
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(11)

This system consisted of a single neuron that received input from the stimulus presentation

and WM(w); as such, activation of this neuron only passed threshold when one or more

items (peaks) was held in WM(w) and the stimulus was present. The stimulus presentation

consisted of both a constant input while the arrays were present (ctar), as well as a transient

input (ctrans, for 30 ms) at the onset of the stimulus. These combined inputs, combined with

input from WM(w) drove activation of the gate neuron above threshold; throughout each

trial, this neuron’s activation was sigmoided and multiplied by the activation from CF(u)

and WM(w) to the decision nodes. In this case, activation from the fields to the decision

nodes was only robust when the gate node was activated above threshold.

Lastly, noise represents white noise added to the activation of the two decision neurons and

gate neuron at each time step. The noise sources are independent for each neuron.

Model Parameters and Fits—We began with parameters from Johnson et al. (2009)3,

with the exception of the gating neuron, which was not used in Johnson et al.’s model. Our

behavioral task differed from theirs in three ways. First, Johnson et al. tested only set size

three, whereas we tested set sizes one through six. Second, Johnson et al. used a single-item

test array rather than the whole-array test we used. Third, our stimuli were selected

randomly on each trial from a pre-determined set of nine colors; Johnson et al. selected from

a continuous color space with 180 possible colors equally distributed in CIELAB 1976 color

space with some constraints on their separations (see Johnson et al., 2009, for details). These

changes were straight-forward to implement in the model, first by changing how many

stimuli were presented to the model in the memory and test arrays, and then by defining the

colors as equally distributed through the 360° color space.

Despite these changes in the task, the parameters from Johnson et al. (2009) provided a

relatively good fit to our data. We chose to modify the parameters slightly to achieve a

closer fit, eventually producing means for each trial type at each set size that were within

one standard deviation of the behavioral means (see Table 2). The mean absolute error of the

model relative to the behavioral data was 2.26%, which is about one-third the overall

standard deviation of 10.73%. Thus, the performance of the model was well within the range

of typical participants in this task.

To accomplish this fit, we began with the parameters from Johnson et al. (2009) and

modified three parameters within the fields: increasing the resting level of CF(u) from -7 to

-6.75, decreasing the resting level of WM(w) from -4 to -4.5, and increasing self-excitation

in the WM layer from 1.5 to 1.6; these changes were necessary to accommodate the range of

set sizes used and the whole-array test, as opposed to all set size three trials with single-item

test in Johnson et al. We also added excitatory projections from the decision neurons to their

associated neural layer. These were used to help stabilize activation within the system once a

3The published table of parameters included errors that were later discovered by J.S. Johnson; a correction has been filed with the
journal, and the corrected parameters were the ones used here.

Johnson et al. Page 29

Atten Percept Psychophys. Author manuscript; available in PMC 2015 August 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



decision was made. For the decision system, we added the gate neuron to control the

projections to the decision neurons. We also changed the following parameters within the

decision neurons: increased the resting level of the same node from -5 to -4.35; made the

projections from CF(u) to the different node stronger, from 1 to 1.4 and made the projection

from the WM (w) to the same neuron stronger, from 0.01 to 0.025; and decreased the

strength of noise on the decision neurons from 0.1 to 0.065. The complete parameter set is

shown in Table A1.
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Figure 1.
(A) Schematic of the change detection task. (B) Behavioral results from change detection:

across set sizes one through six, line shows percent correct, bars show proportion separated

by response type. Error bars show one standard deviation. SS = set size, CR = correct

rejections, H = hits, M = misses, FA = false alarms; note that CR and FA sum to 100, and H

and M sum to 100.
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Figure 2.
The Dynamic Field Theory consisting of three layers: (A) an excitatory contrast field (CF),

(B) an inhibitory layer (Inhib) and (C) an excitatory working memory field (WM). In each

panel, time is across the x-axis, activation on the y-axis, and color value on the z-axis.

Arrows indicate excitatory (green) and inhibitory (red) projections between layers. The

excitatory fields are coupled to two self-excitatory, mutually-inhibitory neurons: one for

different (D) decisions receives activation projected from CF; one for same (S) decisions

receives activation projected from WM.
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Figure 3.
Simulations of the DFT illustrating correct performance in the model, with time slices

through the three layers of the model during key points in the trial: (A) after encoding,

which did not differ across trial types, (B) during the delay and (C) at test on a no-change

trial, and (D) during the delay and (E) at test on a change trial. Activation of the decision

neurons over the course of the trial is shown above the delay and test panels, with lines

indicating the onset of the memory array (M), beginning of the delay (D) onset of the test

array (T), and response time (R). Dashed horizontal lines in each panel indicate zero. CR =

correct rejection.
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Figure 4.
Simulations of the DFT illustrating errors in the model, with time slices through the three

layers of the model during key points in the trial, plus activation of the response neurons

over the course of the trial, as in Figure 3. FA = false alarm.
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Figure 5.
Mean number of peaks sustaining in WM at the end of the delay, averaged across all trails:

line shows overall mean, bars show means separated by response type. Error bars show one

standard deviation. SS = set size, CR = correct rejections, FA = false alarms.
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Figure 6.
Time slice through WM demonstrating how many peaks can be built and maintained

simultaneously. Color values are shown on x-axes and activation on y-axes.
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Figure 7.
Percent of (A) no-change and (B) change trials that resulted in errors (false alarm, miss) or

correct responses (corr rej, hit) as a function of the similarity of items in the memory array.

(C) Percent of change trials that resulted in errors or correct responses as a function of the

similarity between the test item and the items in the memory array.
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Figure 8.
Above-threshold activation in WM during encoding (A) and during the delay period (B) as a

function set size.
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Table 2

Comparison of Results from Simulations and Behavioral Experiment

Simulations Behavioral Data

CR Rate H Rate CR Rate H Rate

SS1 99.00 (2.05) 99.00 (2.05) 99.21 (1.87) 97.89 (3.46)

SS2 99.75 (1.12) 96.50 (3.66) 97.89 (4.19) 97.89 (3.46)

SS3 99.50 (1.54) 94.75 (6.38) 94.47 (6.43) 93.95 (5.67)

SS4 99.25 (1.83) 87.25 (4.13) 93.16 (7.68) 90.53 (8.96)

SS5 94.50 (4.56) 76.75 (8.63) 92.11 (7.51) 81.32 (11.28)

SS6 85.75 (6.93) 72.25 (8.50) 89.21 (7.31) 73.95 (17.45)
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