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Abstract

Executive functions (EFs) enable flexible thinking, something young children are notoriously bad 

at. For instance, in the dimensional change card sort (DCCS) task, 3-year-olds can sort cards by 

one dimension (shape), but continue to sort by this dimension when asked to switch (to color). 

This study tests a prediction of a Dynamic Neural Field (DNF) model that prior experience with 

the post-switch dimension can enhance 3-year-old’s performance in the DCCS task. In Experiment 

1A, a matching game was used to pre-expose 3-year-olds (n=36) to color. This facilitated 

switching from sorting by shape to color. In Experiment 1B, 3-year-olds (n=18) were pre-exposed 

to shape. This did not facilitate switching from sorting by color to shape. The DNF model was 

used to provide a mechanistic explanation for this asymmetry.

Executive functions (EFs) enable humans to think and behave in a flexible, goal-directed 

fashion. EF is an umbrella term for a set of interactive control processes that include 

working memory, inhibition, and attention switching. EFs contribute to children’s reasoning 

(Carlson, Moses, & Breton, 2002), arithmetic (Blair & Razza, 2007), reading (van der Sluis, 

de Jong, & van der Leij, 2008), and social (Clark, Prior, & Kinsella, 2002) abilities. 

Moreover, the establishment of robust EFs in early childhood is predictive of positive 

developmental outcomes, and EF deficits at 3 years of age are predictive of negative 

outcomes in health, wealth, and criminal activity involvement nearly 30 years later (Moffit 

et al., 2011). Not surprisingly, then, EF interventions that positively impact individual 

development are in great demand.

To date, efforts to develop early interventions to improve EFs have yielded mixed results. 

Interventions that have trained children’s task-switching abilities have transferred to other 

EFs such as working memory and inhibitory control (Karbach & Kray, 2009). Interventions 

that have trained children’s working memory abilities, by contrast, have not (for reviews, 

see Diamond, 2012; Shipstead, Hicks, & Engle, 2012). One potential reason that EF 

intervention efforts have yielded mixed results is that theories of EF development do not 

predict what contexts training should transfer to because they do not specify the mechanisms 

by which experience generalizes across contexts (Simmering & Perone, 2013; see also 

Gibson et al., 2012). For example, theories of EF development do not explain how the same 

working memory system is used in multiple task contexts. This limitation hinders their 
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ability to specify the types of experience acquired in one context that should influence 

working memory in another context.

Here, we test a novel prediction of a Dynamic Neural Field (DNF) model of EF 

development that specifies how experience in one context can facilitate children’s 

performance in a canonical probe of EF in early development – the Dimensional Change 

Card Sort (DCCS) task. In the DCCS, children sort a collection of two-dimensional cards 

(e.g., red stars and blue circles) to target cards that match on one dimension (e.g., red circle 

and blue star). After sorting by one dimension, children are instructed to switch the 

dimension used to sort the same cards. Under these standard conditions, 4-year-old, but not 

3-year-old, children flexibly switch attention across dimensions and sort correctly during the 

post-switch phase (Zelazo, 2006).

The standard DCCS task conditions require children to flexibly switch the dimension to 

which they attend across the pre- and post-switch phases of the task. A number of studies 

have shown that 3-year-old children can pass the DCCS task when the standard conditions 

are simplified or modified such that selective dimensional attention is not required (Brace, 

Morton, & Munakata, 2006; Brooks, Hanauer, Padowska, & Rosman, 2003). Other studies 

have shown that 3-year-old children can pass the DCCS task under the standard conditions if 

they are explicitly pre-trained to attend to the bi-dimensionality of the cards they sort in the 

DCCS task (Mack, 2007; Ramscar, Dye, Gustafson, & Klein, 2013). No previous study has 

shown that children can pass the DCCS task under the standard conditions without explicit 

pre-training. The DNF model predicts that flexible attention switching under the standard 

conditions of the DCCS task can be induced via prior experience with the label for and 

features distributed over the feature dimension used in the post-switch phase of the task. 

Below, we describe the DNF model and basis of this prediction. We then test this prediction 

with children.

A Dynamic Neural Field Model of Executive Function Development

DNF models embody a set of concepts linking brain and behavioral dynamics in real time 

and over development (for a review, see Spencer, Perone, & Johnson, 2009). The central 

component of a DNF model is the neural field. Neural fields consist of populations of 

neurons selectively tuned to continuous dimensions (e.g., hue). The dynamics of neural 

fields are governed by local excitatory / lateral inhibitory interactions. For example, a blue 

stimulus excites neurons selectively tuned to the specific hue. These neurons, in turn, excite 

neurons tuned to similar hues in a graded fashion. This excitation also leads to broad 

inhibition surrounding the excitation, creating a local excitatory / lateral inhibitory activation 

profile called a “peak” of activation. One important feature of DNFs is that activity within 

neural fields creates long-term Hebbian memories that influence their activity at a future 

point in time. For example, the neuronal response to a blue stimulus will create a long-term 

memory that strengthens the neuronal response to similar hues at a future point in time.

Buss and Spencer’s (2014) model of EF development consists of coupled visual-cognitive 

and dimensional attention systems. The left panel of Figure 1A shows the architecture of the 

model. The visual-cognitive system consists of three interactive working memory fields. 
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Shown at the top of 1A is the spatial working memory (SWM) field. SWM represents the 

presence of stimuli at specific locations. SWM is coupled to a shape working memory 

(WMS) field and a color working memory (WMC) field, both of which are shown just below 

SWM. These fields are sensitive to ‘what’ is ‘where’, that is, they respond to features 

distributed along metrically organized feature dimensions such as hue (y-axis) at spatially 

specific locations (x-axis). The connection of WMS and WMC to SWM enables the model to 

represent objects as a color and a shape at a particular location (e.g., red + star on the left). 

The attention system (AS) consists of competitive nodes that respond to the labels “shape” 

and “color” that control attention switching across dimensions (1B). These nodes are 

coupled to WMS and WMC via a weight matrix that represents learned associations between 

the labels (e.g., ‘color’) and the feature values (e.g., blue) the labels represent.

Buss and Spencer (2014) created 3-year-old and 4-year-old models by making two changes 

to the AS. First, older models had stronger excitatory and inhibitory interaction strengths 

within the AS making the shape and color nodes more competitive (winner-take-all 

interactions) and better able to maintain excitatory interaction once one of a node ‘won’ the 

competition. Second, the older model had a more selective weight matrix between the AS 

and the visual-cognitive system—the color node, for instance, projected greater activation to 

WMC and less activation to WMS. Buss and Spencer used the 3- and 4-year-old models to 

quantitatively simulate developmental changes in children’s performance in the DCCS task 

across 14 variants of the task and to generate and test novel behavioral predictions. Our goal 

here was to probe ways to facilitate the performance of the same 3-year-old model used by 

Buss and Spencer. Note that all model details including equations and parameter settings can 

be found in Buss and Spencer (2014).

Figure 1 illustrates how the 3- and 4-year-old models perform the DCCS task. 1A shows the 

DNF model during the pre-switch phase of the task. The very top shows target cards present 

at left (short, blue object) and right (tall, green object) locations. These target cards provide 

task input to SWM and generate “bumps” of activation at left and right locations in SWM.

The target cards also provide task input to WMS and WMC. As indicated by the light blue 

patches of activity in these fields, the target card depicting the tall, green object generates an 

increase in activation at the tall value in WMS (see “task input” in Figure 1A) and at the 

green value in WMC. Similarly, the target card depicting the short, blue object generates an 

increase in activation on the left side of WMS and WMC.

At the onset of the pre-switch phase, the DNF model is instructed to sort by shape. This 

selectively activates the shape node in the AS. The activation of the shape node is shown in 

1B for the 3-year-old model (solid blue line) and 4-year-old model (solid red line). Because 

the shape node is activated, this node sends stronger activation to WMS than the color node 

sends to WMC. This difference in input strength from the AS to the visual-cognitive system 

is quantified in 1C: the activation from the shape node to WMS is stronger than the 

activation of the color node to WMC for both the 3-year-old model (blue bars) and 4-year-

old model (red bars). This raises the baseline activity of neurons within WMS, effectively 

priming the system to selectively attend to the shape dimension. Note that the strength 

difference in 1C is greater for the 4-year-old model because the nodes have stronger 
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excitatory / inhibitory interactions and because the weight matrix connecting the AS to the 

visual-cognitive system is more selective.

Figure 1D shows that the priming effect also has an impact on the AS. In particular, because 

the AS and the visual-cognitive system are reciprocally connected, the priming leads to an 

increase in the strength of activation WMS sends back to the shape node. This feedback 

from the visual-cognitive system to the AS is stronger for shape than color for both the 3- 

and 4-year-old models, although the activation strengths are greater for the 4-year-old model 

due to the more selective weight matrix.

Next, the model is presented with a response card depicting a short, green object (right 

panels in 1A). This provides a ridge of input across all spatial locations activating all 

neurons tuned to the short feature in WMS and the green hue in WMC (see “ridge input” in 

1A). Recall that because of the task instructions, WMS is primed to respond more strongly to 

shape stimuli than WMC is to color stimuli. Consequently, the overlap of the ridge input 

from the response card with the task input from the target input in WMS creates an 

activation peak at the left location associated with the short stimulus (see red ‘hot spot’ of 

activation in WMS). This peak is a real-time neuronal representation of the shape of the 

short object at the left location. The peak excites neurons tuned to the left location in WMC 

and SWM, leading to peaks in both fields, effectively ‘binding’ the short feature in WMS to 

the green feature in WMC. Consequently, the model sorts the response card to the left 

location, correctly attending to the shape on the card.

There are two influences on attention switching during the post-switch phase. The first is a 

Hebbian memory. The presence of peaks in the working memory fields creates Hebbian 

memories that accumulate slowly over trials. These Hebbian memories facilitate the re-

formation of peaks at previously active sites in the working memory fields. Sorting the 

response cards in the pre-switch phase leads to the accumulation of Hebbian memories in 

WMS and WMC at sites associated with the sorting responses (e.g., at short and green 

feature values). This can be seen in the left panels of 1E which shows the state of the model 

at the onset of the post-switch phase. In WMS, there is co-operation between the Hebbian 

memories and task inputs (white circles) because the model sorted response cards based on a 

match in shape (i.e., short objects to the left and tall objects to the right). Consequently, the 

model is primed to continue sorting by shape. In WMC, by contrast, there is competition: 

Hebbian memories (white circles) accumulated at sites that did not overlap with the task 

inputs because the model sorted response cards to target cards that did not match in color.

The second influence on attention switching during the post-switch phase is the state of the 

AS. At the onset of the post-switch phase, the model is instructed to sort by color instead of 

shape. As is shown in 1F, this selectively activates the color node for the 3-year-old model 

(dashed blue line) and 4-year-old model (dashed red line). Consequently, the activation sent 

from the color node to WMC (see 1G) is stronger than the activation sent from the shape 

node to WMS for both the 3-year-old model (blue bars) and 4-year-old model (red bars). The 

activation returned from WMC to the color node is also stronger than the activation returned 

from WMS to the shape node (1H). Importantly, the degree to which WMC is primed to 

respond to color is less for the 3-year-old model than the 4-year-old model due to weaker 
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excitation / inhibition within the AS and a less selective weight matrix between the AS and 

the visual cognitive system.

This weaker priming has consequences in the post-switch phase because the system must 

overcome the response biases created during the pre-switch phase. In particular, when the 3-

year-old model is presented with the short, green response card in the right panels of 1E, it 

sorts the card based on shape. The color priming was not sufficient to overcome the 

cooperation between Hebbian memories and task input in WMS. By contrast, the 4-year-old 

model sorts correctly during the post-switch phase (not shown; see Buss & Spencer, 2014 

for example simulations) because the color priming effect is much stronger (see 1G and 1H).

In summary, the 3-year-old model fails the DCCS task because there is strong cooperativity 

within the pre-switch working memory field (in this case, WMS) and the AS activity is weak 

and not yet selective. But what if we could somehow boost attention to the post-switch 

dimension, in this example, color? One way to do this is to give the model experience with 

different hue values in the context of the label ‘color’. These experiences should leave 

distributed Hebbian memories within WMC and stronger ‘color’ memories in the AS, 

effectively ‘boosting’ the degree to which the model is primed to respond to color during the 

post-switch phase of the task. Such a boost might be sufficient to tip the scales toward the 

color dimension during the post-switch phase.

Figure 1I implements this idea in the 3-year-old model (see the appendix for additional 

simulation details). In these simulations, the color node was initialized with a slightly 

stronger Hebbian memory reflecting recent experiences with the label ‘color’, priming the 

color node to respond more strongly to ‘color’ than it would without this experience. The 

model was also initialized with Hebbian memories for a collection of objects experienced 

outside the context of the DCCS task that all shared the same shape but varied in color. 

Importantly, we did not use any of the feature values used in the DCCS task. The resultant 

Hebbian memories are shown in the left panels of 1I. There is a localized memory on the 

shape dimension (light blue ridge at center of shape dimension in WMS). This reflects the 

one shape shared by all colors experienced prior to the DCCS task. There are distributed 

memories on the color dimension (light blue patches along entire color dimension in WMC). 

This reflects the variable colors the model was exposed to prior to the DCCS task. These 

memories elevate the neural activity across the color dimension in WMC, priming WMC to 

respond more robustly to color stimuli than it would without this prior experience.

This priming had a big impact on the performance of the 3-year-old model in the DCCS 

task. This is evident in the right panels of 1I which show performance during the post-switch 

phase. When the model is presented with the short, green response card at the onset of the 

post-switch phase and is instructed to sort by color, the label input and Hebbian memories in 

the AS and WMC combine to create a stronger boost for color. The model sorts the short, 

green card to the right by color.

The influence of the Hebbian memories on the model’s dynamics is evident in the reciprocal 

interaction between the AS and visual-cognitive system. In particular, the slight increase in 

the Hebbian memories at the start of the simulation creates stronger activation from the 
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color node to WMC (1G) and stronger activation from WMC to the color node (1H) during 

the post-switch phase for the 3-year-old model with Hebbian memories (green bars) relative 

to the standard 3-year-old model (blue bars). This can also be seen in 1J, which shows the 

stronger activation of the color node for the model with prior experience (dashed green line) 

relative to the standard 3-year-old model (dashed blue line). This slight initial boost for color 

is sufficient to tip the balance during the post-switch phase of the task and the 3-year-old 

model correctly switches attention from shape to color.

Quantitative Model Predictions

We quantitatively probed this prediction using the 3-year-old model, parameters, and 

simulation method from Buss and Spencer (2014). The distribution of the stimulus inputs is 

shown in Figure 2. The inputs were sampled from a set of 18 equidistant metric steps on the 

shape and color dimensions, which were distributed over 100 neurons in the model. Each 

metric step in the model for color and for shape was separated by 4 neurons. Each object 

consisted of one feature from the shape dimension and one feature from the color dimension. 

For example, stimulus s5c5 is the fifth feature on the shape and color dimensions. The 

values s5c5 and s14c14 (squares) were used as target cards. The values s14c5 and s5c14 

(circles) were used as response cards. The model was instructed to sort each response card 

three times by shape during the pre-switch phase and each response card three times by 

color during the post-switch phase. When sorting by shape during the pre-switch phase, 

sorting response card s14c5 to target card s14c14 and response card s5c14 to s5c5 was the 

correct response because they share the same shape. When sorting by color during the post-

switch phase, sorting response card s14c5 to target card s5c5 and response card s5c14 to 

s14c14 was the correct response because they share the same color. The model was run 

through the DCCS task 100 times under these standard conditions. To pass the DCCS task, it 

was required to correctly sort 5 of the 6 cards during the post-switch phase. The model 

passed at a rate of 30% (Figure 3). The model was also run through a memory + standard 

condition 100 times. It was initialized with Hebbian memories for five colors that spanned 

the color dimension (1, 6, 10, 13 and 18), all paired with the same shape (10). The strength 

of the memories for the five colors was set to .2 (the strength of the memory for the single 

shape shared by all colors was set to .6). The model passed at a rate of 81% (Figure 3).

Previous studies have shown that children can pass the DCCS task when the standard 

conditions are simplified (Brace et al, 2006) or children are explicitly pre-trained to attend to 

the features on both dimensions on the response cards used in the DCCS task (Mack, 2007; 

Ramscar et al, 2013). The DNF model predicts that attention switching in 3-year-old 

children can be induced by experience with the post-switch dimension even when the 

features used in the DCCS task are not part of that experience and the pre-exposure happens 

in a different task context. We tested this prediction in Experiment 1A.

Experiment 1A

Method

Participants—Eighteen 3-year-old (9 girls, M = 42.5 months, SD = 2.84) children 

participated in a memory game + standard DCCS condition. One additional child 
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participated but was excluded for failing to sort 5 of 6 cards correctly during the pre-switch 

phase (see Zelazo, 2006). Eighteen 3-year-old children (10 girls, M = 41.30 months, SD = 

2.30) participated in the standard DCCS task only. Four additional children participated but 

were excluded due to fussiness (n = 2) and failing to sort 5 of 6 cards correctly during the 

pre-switch phase (n = 2). Children were recruited from birth records and local child care 

facilities.

Stimuli, Design, and Procedure—The stimulus set from which the target, sorting, and 

memory game (described below) cards were derived were buggles (see Figure 2; Perone & 

Spencer, 2014). The set is a collection of objects that consist of one value along continuous 

color (hue) and shape (aspect-ratio) dimensions. On the color dimension, 18 equidistant 

colors were sampled from 1-180° of a 360° continuous color space (CIE*Lab, 1976). The 

shape dimension was parsed into 18 equidistant steps. Each metric step was defined by a 

proportional change in height and width, with total area held constant.

The color and shape values used were the same as those used in the DNF model. For the 

DCCS task, there were two sets of cards. For one set, s5c5/s14c14 were target cards and 

s14c5/s5c14 were response cards. For the other set, s5c14/s14c5 were target cards and s5c5/

s14c14 were sorting cards. The set of cards used was counterbalanced across children. The 

goal of the standard condition was to ensure that 3-year-old children pass the DCCS at rates 

comparable to that observed in the literature with this new, metrically organized stimulus 

set. Given this goal, it was important for half of the children to sort by shape during the pre-

switch phase and the other half of the children sort by color.

The standard conditions followed Zelazo’s (2006) protocol. The experimenter told the child 

the pre-switch rule (“We are going to play the shape game”). The experimenter showed the 

child how to sort one card by the pre-switch dimension and ensured that the child could do 

so with another card. During the pre-switch phase, the experimenter presented each response 

card, labeled it along the pre-switch dimension (“Here’s a blue buggle.”), and asked the 

child to sort the card (“Can you put it where it goes?”). If the child sorted incorrectly, the 

pre-switch rules were re-stated. At the onset of the post-switch phase, the experimenter 

explained the post-switch rule (“Now we are going to play the color game”) but did not 

show the child how to sort the cards by the post-switch rule. The post-switch phase was 

otherwise identical to the pre-switch phase. Children sorted each response card three times 

each. The order of the cards was random with the constraint that no more than two identical 

cards were presented on consecutive trials.

Children in the memory + standard condition played a memory game much like those sold 

commercially or played with a standard deck of cards. The goal of the memory game was to 

expose children to what would be the post-switch dimension in the DCCS task in an 

engaging task appropriate for the age group. For all children in the memory + standard 

condition, the pre-switch dimension was shape and the post-switch dimension was color. 

During the memory game, children matched 5 pairs of cards depicting the same shape and 

color values used in the DNF model. The same shape (10) was used for all cards but the 

colors spanned the color dimension (1, 6, 10, 13, 18; see Figure 2).
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The experimenter and child sat at a table with the matching cards spread out face up within 

reaching distance. The experimenter familiarized the child with each matching pair of cards 

by showing the child each card and its match together. The experimenter said to the child, 

“Look! These two are the same color” to help ensure the child was engaged in the 

familiarization phase. The experimenter only labeled the dimension (i.e., color) and did not 

label any of the individual color values (e.g., blue). After the child was familiar with each 

pair, the experimenter flipped all the cards over so that they were face down and scrambled 

them. The experimenter then explained to the child that they were going to try to find the 

colors that matched. The experimenter provided a demonstration by turning over two non-

matching cards, one at a time, and said “These two aren’t the same color.” The experimenter 

then flipped the two non-matching cards back over and told the child it was his/her turn. The 

child and experimenter took turns flipping over pairs of cards. If the pair was a match, then 

the cards were removed from the game. If the pair was not a match, both cards were flipped 

back over. Each child was required to find four of the five matches during the game. The 

experimenter randomly selected non-matching pairs of cards during his/her turn, until only 

four cards remained in the game. The experimenter then selected a matching pair to allow 

the child to uncover the final matching pair. It is notable that children may solve the memory 

game via trial and error or randomly flipping over cards rather than finding matches by 

relying on memory of the colors of previously flipped over cards. However, previous studies 

have shown that children of this age form working memories even for rapidly presented 

stimuli (Simmering, 2012); thus even if children’s performance was based on trial-and-error, 

they likely formed memories for the color values. Once all the matches were found, the 

DCCS task was administered.

Results

Children were considered to pass the post-switch phase of the DCCS task if they correctly 

sorted 5 of the 6 cards presented during the post-switch phase (Zelazo, 2006). Only 7 of 18 

(38.9%) children passed the standard condition of the DCCS task with our metrically 

organized stimulus set (Figure 3), replicating previous findings (Zelazo, Müller, Frye, & 

Marcovitch, 2003). Of the 7 children who passed, 3 sorted by color during the pre-switch 

phase and 4 sorted by shape during the pre-switch phase. The rate of passing did not differ 

by pre-switch dimension χ2 (1,N=18) = .234, p =.629. Results for the memory + standard 

condition were strikingly different: 14 of 18 children (77.8%) passed the DCCS task (Figure 

3). A Chi-square analysis revealed that significantly more 3-year-old children passed in the 

memory game + standard condition than in the standard condition alone, χ2 (1,N=36) = 5.60, 

p =.018. Thus, 3-year-old children flexibly switched attention from the shape to the color 

dimension under the standard conditions of the DCCS task after acquiring prior experience 

with the post-switch dimension.

Discussion

The results of Experiment 1A are consistent with the DNF model prediction that experience 

with colors prior to the DCCS task can induce flexible attention switching from shape to 

color in 3-year-old children. Previous studies have shown that children can pass the DCCS 

task when the standard conditions are simplified (Brace et al, 2006) or children are explicitly 

pre-trained to attend to the features on both dimensions on the response cards used in the 
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DCCS task (Mack, 2007; Ramscar et al, 2013). Here, however, children’s flexibility was 

induced under the standard conditions without explicit task-specific pre-training or 

simplification.

One open question is whether flexible attention switching in the DCCS can also be induced 

for the shape dimension. Our simulations of the DNF model treated the color and shape 

dimensions equivalently. That is, the metric organization of the colors and shapes were 

identical for both dimensions in the model. Nevertheless, previous studies have observed 

asymmetries in children’s DCCS performance based on the dimension they sort by during 

the post-switch phase. For example, Fisher (2011) found that 3-year-old children failed a 

version of the DCCS task when they were asked to switch from a dimension with distinct 

features (e.g., star and flower) to a dimension with similar features (e.g., pink and red), but 

not when they were asked to switch from similar features to distinct features. Although 

children failed our DCCS task under the standard conditions regardless of whether they were 

sorting by color or by shape during the post-switch phase, it is possible that a memory game 

for the shapes used here would not influence children in the same way as color did. Thus, in 

Experiment 1B we tested whether experience with values distributed over the shape 

dimension could induce flexible attention switching from color to shape.

Experiment 1B

Method

Participants—Eighteen 3-year-old children (8 girls, M = 41.36 months, SD = 4.84) 

participated in this study. Nine additional children participated but were excluded due to 

fussiness (n = 2), experimenter error (n = 6), or failing the pre-switch phase (n = 1). Children 

were recruited from birth records, university community, and child care facilities.

Stimuli, Design, and Procedure—The stimuli, design, and procedure were identical to 

Experiment 1A with two exceptions. First, children matched by shape instead of color 

during the memory game with the same metric distribution of values over the shape 

dimension as was used for the color dimension in Experiment 1A (see Figure 2). Second, 

children sorted by color during the pre-switch phase of the DCCS task and shape during the 

post-switch phase.

Results

One child was excluded from the final analysis because she/he failed the pre-switch phase of 

the task. Eight of 18 (44.4%) children passed the post-switch phase of the task (Figure 4). A 

Chi-square analysis revealed that the number of 3-year-old children that passed the shape 

memory game + standard condition was not significantly different than the number of 

children that passed under the standard conditions alone, χ2 (1,N=36) = .11, p = .74, but was 

significantly less than the number of children who passed in the color memory game + 

standard condition, χ2 (1,N=36) = 4.21, p = .04. Thus, the experience provided during the 

shape memory game prior to participating in the DCCS task did not facilitate 3-year-old 

children’s ability to flexibly switch attention from color to shape.
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Discussion

The results indicate that experience with the color and shape dimensions used here do not 

influence children’s ability to flexibly switch attention across dimensions in the DCCS task 

in the same way. Why might this be? For insight, we return to results from Fisher (2011) 

showing that 3-year-old children failed a version of the DCCS task when they were asked to 

switch from a dimension with distinct features to a dimension with similar features, but not 

when they were asked to switch from similar features to distinct features. Buss and Spencer 

(2014) quantitatively simulated results from this study by changing the metric distribution of 

features used in the DNF model. When model inputs were compressed along one dimension 

making the inputs less distinctive along that dimension, the model failed the DCCS task if 

this less distinctive dimension was used as the post-switch dimension. By contrast, when the 

less distinctive dimension was the pre-switch dimension, the model correctly switched rules 

in the post-switch phase.

Based on these findings, we hypothesized that the asymmetry in the present study might 

reflect a similar asymmetry in the distinctiveness of the color and shape dimensions. In 

particular, we hypothesized that the shape dimension was less distinctive, that is, adjacent 

steps along the shape dimension were compressed relative to steps along the color 

dimension. The critical question here is how this asymmetry might impact the memories 

carried forward from the shape memory game to the DCCS task.

To explore this, we constructed a simplified, one-dimensional DNF model that enabled us to 

probe how experience with a distributed versus compressed set of stimuli would influence 

working memory peaks and Hebbian memories across a series of learning trials comparable 

to what children might experience in the memory game (for model details, see appendix). 

Figure 5 shows these simulations. The top of 5A shows the metric organization of colors 

used in Experiment 1A. Each metric step on the 18 step dimension is separated by 4 neurons 

in a neural population of 100 neurons selectively tuned to color. With this separation of 

values in color space, there is substantial neural territory devoted to each color. The middle 

panel of 5A shows a working memory field for color (WMC_1D), and the bottom panel 

shows an associated Hebbian layer for color (HLC_1D). This model was presented with the 

five color values used in the color memory game in a random order across 30 learning trials, 

much like successively flipping over cards in the color memory game while seeking 

matches. 5A shows the model early in learning. The model is maintaining a working 

memory for color 13 and has accumulated Hebbian memories for colors 1 and 10 on 

previous trials. 5B shows the model a bit later in learning. Now, the model is maintaining a 

working memory for color 1 but, critically, it is also maintaining a working memory for 

color 10 that was presented in the just-recent past. This enables the model to form robust 

Hebbian memories for both items. This learning process continues across trials, leading to 

strong Hebbian memories for all colors from the memory game (5C).

Figure 5D-F shows what emerges when the model is presented with shapes that are less 

distinctive, that is, with shapes that are compressed together along the metric feature 

dimension (see top panel of 5D). In particular, each metric step on the 18 step dimension is 

separated by just 1.5 neurons in a neural population of 100 neurons selectively tuned to 

shape. With this small step size in shape space, there is little neural territory devoted to each 
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shape. This has a dramatic impact on learning about shapes in the model. 5D shows the 

model early in learning. At this point, the model is maintaining a working memory of shape 

6 and has accumulated Hebbian memories for shapes 1 and 6. A bit later in learning, the 

model is still only maintaining one shape in working memory (5E). This contrasts with the 

same model learning about colors in 5B—that model was able to maintain multiple colors in 

working memory at the same point in learning. What is the source of this difference? The 

close proximity of shape values leads to working memory peaks that inhibit each other. 

When a new working memory peak is formed, the lateral inhibition surrounding it 

effectively knocks out any existing working memory peaks that are close by (see inhibitory 

troughs surrounding peaks in 5D-F). This interferes with the formation of Hebbian 

memories, ultimately leading to weak Hebbian memories for the individual shapes over 

learning (5F). These weaker Hebbian memories for shapes, relative to those for colors (5C), 

may be insufficient to prime the shape dimension in the DCCS task. These simulations are 

consistent with recent evidence showing that young children’s performance in a working 

memory task was poorer for similar items than dissimilar items (Simmering & Cooper, 

2014).

To probe whether this account might explain the asymmetry we observed across 

Experiments 1A and 1B, we conducted a second set of quantitative simulations. In 

particular, we re-simulated the model, testing the hypothesis that weaker Hebbian memory 

strengths for less distinctive shapes relative to stronger Hebbian memory strengths for colors 

could account for the pattern of behavioral results observed in Experiments 1A and 1B.

Quantitative Model Simulations of Dimensional Asymmetry

To re-simulate the DNF model and test whether the asymmetry across Experiments 1A and 

1B might reflect differences in the distinctiveness of the colors versus shapes used in our 

stimulus set, we used the metric organization of the color and shape dimensions shown in 

Figure 5. The 18 metric steps on the color dimension were distributed as in Experiment 1A 

with each step separated by 4 neurons as illustrated in 5A. The 18 metric steps on the shape 

dimension, by contrast, were each separated by 1.5 neurons as illustrated in 5D. Recall that 

the metric organization of the stimulus inputs were identical on the shape and color 

dimensions in our previous simulations. Moreover, Buss and Spencer (2014) showed that 

the metric distribution of inputs can have an impact on performance in the standard DCCS 

task. Thus, the first set of simulations below tested whether the DNF model produces the 

same pattern of results in the standard task (see Figure 3) with the distribution of inputs 

compressed along the shape dimension (see Figure 5).

Next, we simulated the color memory game + standard condition using inputs compressed 

along the shape dimension. The goal of these simulations was to examine whether the novel 

prediction from Experiment 1A was replicated with the new input distribution for shape 

when color was the post-switch dimension in the DCCS task. The strength of the memories 

for the five colors was set to .2 (the strength of the memory for the single shape shared by all 

colors was set to .0375). Finally, we simulated the shape memory game + standard 

condition. Here, we once again used inputs compressed along the shape dimension. The 

strength of the initial Hebbian memories for the shapes used in the shape memory game 
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were reduced relative to the colors used in the color memory game to reflect the weaker 

learning revealed in our previous simulations (see Figure 5). The strength of the memories 

for the five shapes was set to .025 (the strength of the memory for the single color shared by 

all shapes was set to .3). All simulation sets consisted of 100 simulations of the 3-year-old 

model from Buss and Spencer (2014).

Simulation results are shown in Figure 4 along with children’s performance from 

Experiments 1A and 1B. The DNF model performed similarly to children across all 

conditions. Specifically, the model with compressed inputs along the shape dimension 

showed low rates of passing under the standard conditions regardless of whether color or 

shape was the post-switch dimension. For the color memory game + standard, the DNF 

model correctly switched and sorted by color in the post-switch phase as before, replicating 

the novel prediction from Experiment 1A. By contrast, for the shape memory game + 

standard, the DNF model failed to switch to shape in the post-switch phase. Thus, the close 

metric separation for shapes did not influence the model’s performance under the standard 

conditions or the color memory + standard condition. For the shape memory game + 

standard condition, by contrast, the model, like children, failed to switch attention to shape. 

These simulations provide support for the hypothesis that the asymmetry in our empirical 

results might arise from a shape dimension that is less distinctive.

General Discussion

The present study showed that experience with a metrically organized feature dimension in a 

memory-matching game can enhance attention switching in the DCCS task. This is the first 

demonstration that young children can pass the DCCS task under the standard conditions 

without simplification (Brace et al., 2006; Brooks et al., 2003) or explicit pre-training to 

attend to the bi-dimensionality of the cards (Mack, 2007; Ramscar et al., 2013). In 

Experiment 1A, children played a game prior to the DCCS task that involved matching 

colors sampled from a wide range of the color dimension used here but that were not the 

colors used in the DCCS task itself. This experience over the color dimension induced 

flexible attention switching from shape to color in the DCCS task. A different pattern of 

results emerged in Experiment 1B. Children did not flexibly switch attention from color to 

shape in the DCCS task after experience with shapes sampled from the shape dimension. 

These results mark an important step toward understanding how attention switching can be 

facilitated across contexts, highlighting the role of stimulus features and how learning 

carries forward across situations. We discuss these contributions below.

What are the mechanisms by which experience over a dimension might influence attention 

switching across contexts? It has long been known that memories for auditory and visual 

features generalize over continuous dimensions based on a similarity gradient (Pavlov, 

1937; Spence, 1937; for a discussion, see McLaren & Mackintosh, 2002). An old literature 

exploring developmental change in children’s dimensional attention abilities showed that 

children’s attention could be shifted from the featural to dimensional level by exposing them 

to multiple values distributed over a dimension, much like we did here. For example, Tighe 

and Tighe (1969) gave children who were in their first grade of elementary school a 

cylinder, showed them a series of different sized cylinders, and asked them to judge whether 
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their cylinder matched the one shown to them. This enabled the children to represent 

relations between previously unseen values along that same size dimension in a 

transposition task (see also, Tighe & Tighe, 1968).

More recently, Perry and Samuelson (2013) induced attention to dimensions in children who 

were holistic attenders via a categorization task that required attention to a single dimension. 

In a pre-test, children were classified as dimensional or holistic attenders based on 

performance in a standard triad classification task with stimuli that varied on size and 

brightness. Children then did a categorization task during which they learned to sort stimuli 

into two categories based on attention to one dimension, either size or brightness. Children 

received feedback about their responses and were required to reach a performance criterion 

of 100% across multiple trials. Perry and Samuelson found that some of the children who 

had initially been classified as holistic attenders were able to attend dimensionally in a triad 

classification post-test that followed category learning.

The DNF model provides an account of how experience over a dimension can generate 

attention at the dimensional level across contexts. The model connects neural populations 

involved in processing dimensional labels such as ‘color’ and ‘shape’ in the AS to neural 

populations involved in remembering feature values distributed over those same dimensions 

in the visual-cognitive system. Experience provided with the label ‘color’ and values 

distributed over the color dimension during the memory game primed these systems to 

respond more robustly when exposed to those labels and similar features at a future point in 

time, as in the DCCS task. Importantly, the experience provided during the memory game 

led to changes in the activation passed back and forth between the AS and visual-cognitive 

systems—the same systems responsible for developmental change in dimensional attention 

in simulations reported by Buss and Spencer (2014). These simulation results raise the 

possibility that experience with labels and distributed features may be central to 

developmental changes in dimensional attention.

One alternative explanation of children’s enhanced performance in the DCCS task is that the 

act of matching in the memory game, rather than exposure to the colors, improved children’s 

ability to sort correctly during the DCCS task. Interestingly, the asymmetry in results across 

Experiments 1A and 1B suggests this alternative is unlikely. In particular, children’s 

performance in the DCCS task when switching from color to shape was not enhanced by the 

memory-matching game in Experiment 1B, even though children still identified matches.

Critically, results from Experiment 1B also suggest that the metric organization of a 

dimension influences children’s ability to carry forward experiences across contexts and, 

ultimately, whether or not flexible attention switching can be induced across contexts. 

Similar asymmetries in children’s DCCS performance have been observed in previous 

studies (e.g., Fisher, 2011). Inspired by simulations of such asymmetries (see Buss & 

Spencer, 2014), we hypothesized that the shape stimuli used here were metrically 

compressed—less distinctive—relative to the color stimuli. Simulations of the DNF model 

demonstrated the viability of this hypothesis—the model effectively captured the full range 

of children’s performance across conditions.
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One intriguing possibility raised by these simulations is that the influence of the shape 

memory game on children’s DCCS performance might be enhanced via more intensive 

experience with the shape dimension. It is well known that the neuronal resources dedicated 

to stimulus representation can be increased via experience. For example, Recanzone, 

Merzenich, Jenkins, Grajski, and Dinse (1992) found that the neural territory devoted to the 

representation of one finger in somatosensory cortex increases in an experience dependent 

fashion in monkeys. Similarly, Ditye et al. (2013) found that improvements in adults’ ability 

to make subtle perceptual discriminations of color-motion conjunctions is associated with 

increased cortical matter as a result of intensive practice performing discriminations. It is 

possible that the similarities in the shapes used here, variations in ovals, were compressed 

relative to the entire shape dimension. The entire shape dimension might reflect children’s 

experience with canonical shapes such as star, triangle, and circle. Giving children extended 

experience discriminating the shape variations in our stimuli might expand the 

representational space devoted to variations in oval. This might, in turn, enable experience 

with shape to induce flexible attention switching from color to shape in the DCCS task. 

Alternatively, it might be possible to make the shape changes across the dimension more 

dramatic. While this is conceptually possible, in our stimulus set shapes 1 and 18 are already 

quite stretched (see Figure 2).

The DNF model provides novel insights into the influence of dimensional experience across 

contexts. The model has several distinct advantages relative to other neural network models 

that have been used to capture developmental change in children’s performance in the 

DCCS task (for an extensive comparison of theories, see Buss & Spencer, 2014). For 

instance, Morton and Munakata (2002) proposed a connectionist model consisting of a bank 

of nodes for each feature value (e.g., red, blue, circle, star) and a bank of nodes for each 

label. These input units feed into a hidden layer, which, in turn, feeds into an output layer 

that generates a sorting response (left or right). Across a series of trials, a robust latent (long-

term) memory develops and competes with an active (working) memory generated by the 

post-switch sorting cards and labels. Developmental differences in DCCS performance arise 

when ‘older’ models generate a sufficiently robust active memory for the post-switch rule 

that can overcome the strength of the latent memory accumulated during the pre-switch 

phase.

The processes in the DNF model involved in children’s DCCS performance bear some 

resemblance to those proposed by Morton and Munakata (2002). For example, competition 

between memories generated from sorting during the pre-switch phase and what the child is 

asked to sort by in the post-switch phase play an important role in both models’ account of 

young children’s performance. But there are also important differences between models that 

are relevant to the current results (for additional contrasts, see Buss & Spencer, 2014). In 

particular, the connectionist model represents feature values independent of the dimensions 

along which they are distributed. Thus, it is unclear how experience with features not 

present in the DCCS task could influence later sorting as was evident here. The DNF model, 

by contrast, represents features in neural populations tuned to continuous metric dimensions. 

This unique feature led to the novel prediction tested in the present study. Further, this 

aspect of the model was central to our account of why children showed an asymmetry in 

responding across experiments.
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In conclusion, our work highlights the utility of theoretically guided efforts to enhance 

children’s EF abilities. The DNF model led to a key insight about the nature of 

generalization across contexts, which led to the first empirical demonstration of successful 

switching by 3-year-old children in the standard DCCS task without simplification or task-

specific training. The model provided a mechanistic account of asymmetries in the influence 

of dimensional experience across contexts as well, highlighting the importance of 

understanding how the details of the stimulus and task come together to influence children’s 

behavior. The DNF model also inspired a new paradigm for future investigations of how 

specific types of dimensional experience with features and labels influence young children’s 

cognitive flexibility in the DCCS task. One exciting possibility is that the experience 

acquired in the memory game might generalize to contexts beyond the DCCS. For example, 

might experience acquired in the memory game enhance children’s working memory for 

colors?

Perhaps most importantly, our work may shed new light on efforts to train flexible 

dimensional attention in children. Effective attention switching abilities are necessary for 

children to meet the challenges they face each day. In the classroom, children are constantly 

asked to switch attention across dimensions as they shift from one learning context to 

another. For instance, children must switch from attending to the size dimension while 

learning mathematics to the color dimension while painting during art. We gave children 

experience with a dimensional label and stimuli that spanned one metric dimension. The 

intriguing possibility is that this might be an effective way to help children learn 

dimensional attention skills as they extract the pattern of associations that maps a 

dimensional label like ‘color’ to a distributed set of features. Such training might be an 

important advance in efforts to foster EFs across a range of contexts, including the out-of-

lab contexts so critical to positive developmental outcomes.
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Appendix

The simulations in the main text used the equations, parameters, and simulation method 

from Buss and Spencer (2014) with the following exception: to generate the novel prediction 

described in Figure 1, we made three changes relative to the original report. The first change 

was the addition of memory (m) nodes that were coupled to the color node, icolor, and to the 

shape node, ishape. The addition of the m nodes were required to implement experience with 

the label ‘color’ or ‘shape’ acquired during the memory game prior to the Dimensional 

Change Card Sort (DCCS) task. The equations for the m nodes associated with the color and 

shape nodes are identical. For simplicity, we only describe the equation for the m node 

associated with icolor. The equation is:
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where  (t) is the rate of change of activation of m as a function of time, t. The 

constants τm_build and τm_decay set the time scale along which the memory trace accrues and 

decays, respectively. τm_build was set to 5,000 and τm_decay was set to 200,000. Activation of 

the m node accrues only when icolor is suprathreshold. Otherwise, activation of the m node 

decays. This thresholding is dictated by the gating function, g, which takes on a sigmoidal 

shape over the activation variable icolor. The gating function is:

where β (set to .1) is the slope of the sigmoid function and icolor0 is the threshold (zero). 

Experience with the label ‘color’ was implemented by initializing the m node associated 

with icolor to .05. The m node evolves from this initial condition. Note that input from the m 

node to icolor was scaled by a strength parameter, cicolorm, set to .75.

The second change relative to the Buss and Spencer (2014) simulations was the 

initializations of the Hebbian layers associated with WMC and WMS. This initialization was 

required to implement prior experience with the post-switch dimension acquired in the 

memory game prior to the DCCS task. The Hebbian layers were initialized with Gaussian 

pattern inputs distributed over the feature dimension, y, and distributed homogeneously 

across the spatial dimension, x. The strength of the five color inputs to the Hebbian layer 

associated with WMC was set to .1 with width 2, and the strength of the memory for the 

single shape shared by all colors to the Hebbian layer associated with WMS was set to .3 

with width 2. The slightly stronger input for the single shape was set to reflect the more 

intensive exposure to the single shape relative to the five colors. All strengths of the 

Hebbian inputs for the quantitative simulations are described in the text.

The third change relative to the Buss and Spencer (2014) simulations was the parameters of 

the AS. Preliminary simulations of the model revealed that the original Buss and Spencer 

parameters for the AS were not sensitive to changes in how the Hebbian layers were 

initialized. This was not surprising given that Buss and Spencer never explored this aspect of 

the model. One reason why the model was not influenced by these initial conditions was that 

the AS tended to show ‘all-or-none’ behavior. Thus, we examined whether we could make 

the parameters for the 3-year-old AS and the 4-year-old AS show less all-or-none activation 

dynamics, while still simulating the standard DCCS task. To do this, we increased excitation 

and decreased inhibition. This can be seen in Table A1, where the parameters of the AS we 

manipulated are shown next to the same parameters from Buss & Spencer in parentheses. As 

can be seen in the table, the 4-year-old model still had stronger excitation and inhibition 

overall, but the resultant values for these two models were much closer together than in Buss 

and Spencer.
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The change in activation dynamics for the attentional nodes, of course, also changed the 

activation passed back-and-forth between the AS and the WM fields. Thus, we had to 

modify the strength of these projections to compensate (see Table A1). For the 3-year-old 

model, we had to increase the strength of the projection to and from the nodes to the 

‘relevant’ dimension (e.g., ‘color’ node to color dimension). The projection for the 

‘mismatched’ dimension (e.g., ‘color’ node to shape dimension) were set to .01. For the 4-

year-old model, by contrast, we had to decrease the strength of the projection to and from 

the nodes to the ‘relevant’ dimension. The ‘mismatched’ projections were all set to a value 

of .001. Finally, now that the AS dynamics were more excitable overall, we reduced the 

strength of the direct input to the nodes that specified which game was being played (e.g., 

input to the ‘color’ node during the color game).

Once we had verified that the new parameters effectively simulated performance in the 

standard task for both ages, we then explored the influence of prior experience (i.e., 

initializing the Hebbian layers). These simulations are shown in Figure 1 in the main text.

Table A1

Attentional System Parameters (Buss & Spencer parameters)

3-year-old 4-year-old

cii_excite 3 (1) 3.2 (5)

cii_inhib 2 (5) 3 (20)

ciw_colorcolor 0.05 (.005) .057 (.3)

ciw_colorshape 0.01 (.0025) 0.001 (.001)

ciw_shapeshape 0.05 (.005) 0.057 (.3)

ciw_shapecolor 0.01 (.0025) 0.001 (.001)

cwi_colorcolor 2 (1) 2.8 (3)

cwi_colorshape 0.01 (.5) 0.001 (.1)

cwi_shapeshape 2 (1) 2.8 (3)

cwi_shapecolor 0.01 (.5) 0.001 (.1)

Si_color 0.2 (1) 0.2 (1)

Si_shape 0.2 (1) 0.2 (1)

Simulations of Dimensional Asymmetry

The asymmetry in the strength and metric separation of the inputs across the shape and color 

dimensions for the simulations in Experiment 1B was motivated by the simulations of the 

one-dimensional DNF model of working memory described in the text and shown in Figure 

5. The equations and parameters for this model are described below.

Working Memory (WM)

The simulations in the manuscript in Figure 5 showed a one-dimensional working memory 

field for color (WMC_1D) and the same for shape (WMS_1D). The equations (and 

parameters) governing these fields are identical. For simplicity, only the equations for 

WMC_1D are shown. WMC_1D consists of an excitatory layer (w) and an inhibitory layer (v). 
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The excitatory layer is also coupled to a Hebbian layer (HL). Each layer is described below. 

The excitatory layer of WMC_1D is given by the following equation:

where  is the rate of change of activation in the excitatory layer of WMC_1D across 

the continuous behavioral dimension, y, as a function of time, t. τe is the time constant along 

which excitatory activation evolves. Activation within WMC_1D is influenced by its current 

state, w(y,t), and its negative neuronal resting level, hw. The stimulus input takes the form of 

a Gaussian distributed over the behavioral dimension, y:

with stimulus position centered at μ, strength α (set to 10), and width σ (set to 1). The gating 

function, χ(t), is set to 1 when the stimulus is present. For simulations of the shape memory 

game and color memory game, an input was randomly selected from a set of 5 every 2000 

time steps for 60,000 time steps. For the shape memory game, the metric distance between 

each step was 1.5. For the color memory game, the metric distance between each step was 4. 

See text for additional details.

WMC_1D dynamics are influenced by local excitatory within-layer interactions, +∫cww(y–y

′)g(w(y′),t)dy′. These interactions are specified by the convolution of a Gaussian profile, 

cww(y–y′), which determines the neighborhood across which excitatory interactions 

propagate and a nonlinear gating function, g(w(y′),t)dy′, dictating that only neurons with 

above threshold activation (>0) participate in the interactions.

The Gaussian convolution was defined by:
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where a sets the amplitude and σ sets the width (i.e., standard deviation) of the connection 

matrix function.

The gating function is given by the following equation which takes a sigmoidal shape over 

the activation variable, w:

where β (set to .5) is the slope of the sigmoid function and u0 is the threshold (zero).

WMC_1D dynamics are also influenced by two inhibitory components. The first is a local 

inhibitory component, −∫ cwv(y–y′)g(v(y′),tdy′. Inhibitory interactions are projected across a 

neural neighborhood specified by a Gaussian, cwv(x–x′), and only above-threshold activity in 

the inhibitory layer contribute to interactions. The second is a global inhibitory component, 

_awv_global ∫g(v(y′),t)dy′, where the sum of suprathreshold activity within the inhibitory 

layer across the behavioral dimension, x, at time, t, is weighted by awv_global.

The last contribution to WMC_1D dynamics is spatially correlated noise, which is presented 

by convolving a field of white noise with a Gaussian kernel, ∫cr(y–y′)ξ(y′,t)dy′, with 

strength, ar, set to .1 and width, σr, set to 2.

Inhibitory Layer

The excitatory layer is reciprocally coupled to an inhibitory layer, v. The equation for the 

inhibitory layer is:

where  specifies the rate of change of activation for each neuron along the behavioral 

dimension, y, as a function of time, t. τi is the time constant along which inhibitory 

activation evolves. Activation in the inhibitory layer is influenced by its current state, v(y,t), 

and its negative neuronal resting level, hv. The inhibitory layer receives excitatory inputs 

from WMC_1D, +∫cvw(y–y′)g(w(y′),t)dy′. These inputs are projected across a neural 

neighborhood specified by a Gaussian projection, c(y–y′), to which only suprathreshold 

neurons in WMC_1D contribute as dictated by the gating function, g. An independent source 

of spatially correlated noise is also added to the inhibitory layer, +∫cr(y–y′)ξ(y′,t)dy′.
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Hebbian Layer (HL)

Activation in WMC_1D is influenced by traces in a Hebbian layer (HL), which implement a 

form of Hebbian learning. The equation for the HL is:

where  is the rate of change of activation for each site, y, in HL as a function of 

time, t. The constants τm_build and τm_decay set the time scale along which activation traces 

accrue and decay, respectively. τm_build was set to 10,000 and τm_decay was set to 40,000. 

Activation in HL only accrues when there is suprathreshold activation in WMC. Otherwise, 

activation in HL decays. Model parameters for WMC_1D are shown in Table A2.

Table A2

One-dimensional Model Parameters

w v m

τe 40 τi 5 cwm 3.5

hw −4 hv −4 σwm 1

cww 1.4 cwv 1

σww 1 σwv 10

cvw 2 awv_global 0.01
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Figure 1. 
Shows DNF model dynamics for 3- and 4-year-old models in DCCS task. Panel A shows the 

model dynamics during the pre-switch phase. Initially, the model is situated in front of target 

cards depicting a short, blue object and a tall, green object. This generates task inputs in 

SWM (see “bumps”) and WMS and WMC (see light blue patches). The model is instructed 

to sort the short, green object depicted on the response card by shape. This leads the shape 

node in the attention system (AS) to become active for the 3- and 4-year-old models (see 

solid blue and solid red lines in B). Consequently, the strength of the connectivity between 

the AS and the visual-cognitive system is stronger for shape than color node (compare left 

portion to right portion of C-D). It is also stronger for the 4-year-old than 3-year-old model 

(compare red bars to blue bars in C-D). This reflects the stronger connectivity in the 4-year-

old than 3-year-old model (see text). These interactions between the AS and visual-cognitive 

system lead the model to sort by shape by forming activation peaks in WMS, WMC, and 

SWM at the left location. Note that the arrows shown from the AS to the visual-cognitive 

system indicate the window of time that AS activity corresponds to the onset of a trial (left 

portion of A) and the sorting of the card (right portion of A).
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Panel E shows the DNF model dynamics during the post-switch phase. The model is 

instructed to sort the short, green object by color. This leads the color node in the AS to 

become active for the 3- and 4-year-old models (see dashed blue and dashed red lines in F). 

During the post-switch phase, the strength of the connectivity between the AS and visual-

cognitive system is stronger for color than for shape (compare right portions of G-H). It is 

also stronger for the 4-year-old than the 3-year-old model (compare red to blue bars in G-H). 

Importantly, for the 3-year-old model, this connectivity is too weak for WMC to overcome 

the robust Hebbian memories acquired from sorting by shape during the pre-switch phase in 

WMS (see white circles). The 3-year-old model continues to sort the short, green object to 

the left location by shape. The 4-year-old model sorts by color (not shown).

Panel I shows the 3-year-old model during the post-switch phase after it has acquired 

experience in the form of Hebbian memories with the dimensional label ‘color’ in the AS 

and 5 objects that differ in color (see distributed light blue patches in WMC) and share one 

shape (see light blue ridge in WMS). This experience primes WMC to respond more strongly 

during the post-switch phase. It also creates a stronger pattern of connectivity from the AS 

to the visual-cognitive system for color than shape (green bars in G) and from the visual-

cognitive system to the AS for color (green bars in H) than in the 3-year-old model alone for 

color (blue bars in G-H). This is also reflected in the strength of the color node in the AS, 

which is stronger for the 3-year-old + memory model than 3-year-old model alone (compare 

dashed green line to dashed blue line in the AS in J). The 3-year-old model switches 

attention across dimensions and sorts the short, green object to the right location based on 

color in the post-switch phase.
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Figure 2. 
Shows buggle stimulus set. Each buggle consist of one value along a continuous, metrically 

organized color (hue) and shape (aspect-ratio) dimension. The entire shape dimension 

consisted of 18 equidistant metric steps. The entire color dimension consisted of 1-180° of a 

360° color space (CIE*Lab, 1976), equally parsed to create 18 equidistant metric steps. The 

objects with squares were used as target (or response) cards, and the objects with circles 

were used as response (or target) cards. The objects sharing shape 10 but varying in color 

were used in the color memory game to expose children to what would be the post-switch 

dimension in Experiment 1A. The objects sharing color 10 but varying in shape were used in 

the shape memory game to expose children to what would be the post-switch dimension in 

Experiment 1B. The same shape and color values were used as input to the DNF model.
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Figure 3. 
Shows the percent of DNF model simulations (black bars) and children (white bars) that 

passed the post-switch phase of the DCCS task under the standard conditions and in the 

memory + standard condition in Experiment 1A.

Perone et al. Page 25

Child Dev. Author manuscript; available in PMC 2015 November 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Shows results across Experiments 1A and 1B. The left portion shows the percent of DNF 

model simulations (black bars) and children (white bars) that passed the post-switch phase 

of the DCCS task under the standard conditions when the post-switch dimension was color 

and when the post-switch dimension was shape (Experiment 1A). The right portion shows 

the percent of DNF model simulations (black bars) and children (white bars) that passed the 

post-switch phase of after the color memory game (Experiment 1A) and the shape memory 

game (Experiment 1B).
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Figure 5. 
Shows simulation of a one-dimensional DNF model of the color memory game (top portion) 

and shape memory game (bottom portion). The top of panel A shows the metric organization 

of the color values used in the color memory game. This is the input to a one-dimensional 

working memory field for color (WMC_1D), shown just below. WMC_1D is coupled to a 

Hebbian layer for colors (HLC_1D). Panel A also shows the model early in learning, after 

exposure to just a couple of colors in the color memory game. At this time, the model has 

acquired a couple weak memories in HLC_1D. Panel C shows the model a bit later in 

learning. Now, the model has acquired more memories in HLC_1D, some of which are 

robust. It is also maintaining multiple items in WMC_1D, which helps the model acquire 

even more robust memories in HLC_1D. By the end of learning, late in the color memory 

game, the model has acquired robust memories in HLC_1D for all the colors in the color 

memory game.

The top of panel D shows the metric organization of the shape values used in the shape 

memory game. These are noticeably closer than those used in the color memory game, even 

though the distribution is the same. These values were input into a one-dimensional working 

memory field for shape (WMS_1D). Panel D also shows the model early in learning, after 

exposure to just a couple of shapes in the shape memory game. The model has a couple of 

weak memories in the associated Hebbian layer, HLS_1D. Panel E shows the model a bit 

later in learning. The model has acquired memories for several shapes in HLS_1D. Notice 

that WMS_1D is only maintaining one item, as compared to two in WMC_1D at the same 

time in learning in the color memory game (see B). This is because the closeness of the 

shape values creates interference in WMS_1D, effectively limiting it to remembering only 
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one item at a time. This, in turn, hinders the ability of the model to form robust memories in 

HLS_1D during the course of the shape memory game (F).
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