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A B S T R A C T

In the current study, we extend a previous methodological pipeline by adding a novel image reconstruction
approach to move functional near-infrared (fNIRS) signals from channel-space on the surface of the head to
voxel-space within the brain volume. We validate this methodology by comparing voxel-wise fNIRS results to
functional magnetic resonance imaging (fMRI) results from a visual working memory (VWM) task using two
approaches. In the first approach, significant voxel-wise correlations were observed between fNIRS and fMRI
measures for all experimental conditions across brain regions in the fronto-parieto-temporal cortices. In the
second approach, we conducted separate multi-factorial ANOVAs on fNIRS and fMRI measures and then
examined the correspondence between main and interaction effects within common regions of interest. Both
fMRI and fNIRS showed similar trends in activation within the VWM network when the number of items held in
working memory increases. These results validate the image-based fNIRS approach.

1. Introduction

Functional magnetic resonance imaging is widely considered to be
the gold standard for neuroimaging. It provides excellent spatial
resolution that has proven useful in a variety of clinical and non-
clinical applications. Nevertheless, fMRI has limitations. It does not
provide good temporal resolution and there is debate about the origin
and nature of the blood oxygen-level dependent signal (BOLD)
(Logothetis et al., 2001). It is also difficult to use fMRI with infants,
children, and some clinical and aging populations because participants
need to lie still in the scanner. Finally, fMRI cannot be used to scan
people who have ‘movable’ metal fragments in their body.

An alternative neuroimaging technique that overcomes some of
these limitations is functional near infrared spectroscopy (fNIRS)
(Boas et al., 2014; Ferrari and Quaresima, 2012). fNIRS systems shine
near-infrared light at two or more different wavelengths through brain
tissue. The two wavelengths of light are differentially absorbed by oxy
(HbO) and de-oxy hemoglobin (HbR). Based on this, a localized
measure of HbO and HbR concentration in the underlying brain tissue
can be determined. Thus, fNIRS provides independent measurements
of both chromophores; this has the potential to reveal new insights into

neurovascular coupling, particularly given the high temporal resolution
of fNIRS. fNIRS can be used with neonates, children, and atypical
populations because it is relatively more resistant to motion artifacts.
Further, the presence of movable metal fragments is not a limitation
with fNIRS. For these reasons, fNIRS has become a neuroimaging tool
of choice for these populations. The primary limitation of fNIRS is its
poorer spatial resolution relative to fMRI. High quality fNIRS signals
can only be obtained from approximately the outer centimeter of
cortical tissue. Although this prevents recording from deeper parts of
the brain, the spatial resolution obtained in the outer brain tissue is
better than that provided by EEG.

fNIRS has been widely used to investigate visual, auditory, motor
and cognitive stimulation both in non-clinical and clinical settings
(Boas et al., 2014; Bortfeld et al., 2009, 2007; Brigadoi et al., 2012;
Wijeakumar et al., 2012a, 2012b). The use of fNIRS in these areas has
been spurred forward by validation studies using simultaneous fMRI
and fNIRS (Cui et al., 2011; Emir et al., 2008; Erdoğan et al., 2014;
Fabiani et al., 2014; Huppert et al., 2006, 2005; Maggioni et al., 2015;
Muthalib et al., 2013; Okamoto et al., 2004; Pflieger and Barbour,
2012; Sakatani et al., 2013; Sassaroli et al., 2005; Sato et al., 2013;
Steinbrink et al., 2006; Strangman et al., 2002; Tong and Frederick,
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2012; Yücel et al., 2012). These studies have demonstrated good spatial
and temporal correlation between both techniques, primarily using
tasks that engage the sensorimotor cortices (e.g., finger tapping tasks).
Given the increasing number of studies using fNIRS to understand
cognition, it is important to validate the use of fNIRS using cognitive
tasks to establish whether the correlation between fMRI and fNIRS
measures holds beyond the sensorimotor cortex.

One cognitive system that has been extensively studied across the
lifespan with functional neuroimaging is visual working memory
(VWM). VWM is an important cognitive system that accounts for up
to 43% of individual differences in global fluid intelligence (Luck and
Vogel, 2013). Previous fMRI studies have identified a fronto-parieto-
temporal network (Druzgal and D’Esposito, 2003; Learmonth et al.,
2001; Linden et al., 2003; Ma et al., 2014; Pessoa and Ungerleider,
2004; Postle, 2015; Rypma et al., 2002; Todd and Marois, 2005; Todd
and Marois, 2004) that is engaged in VWM tasks as well as parts of this
network that are differentially activated by parametric manipulations
of, for instance, the working memory load (Todd and Marois, 2004).
Most regions in this network fall within the cortical depth measured by
fNIRS; thus, VWM is a good target for validating the use of fNIRS in
cognitive applications (Cui et al., 2011; Cutini et al., 2011; Fishburn
et al., 2014; McKendrick et al., 2014; Molteni et al., 2008; Ogawa et al.,
2014; Perlman et al., 2015; Tanaka et al., 2014). To date, two
validation studies have correlated fMRI and fNIRS measures in
VWM tasks (Cui et al., 2011; Sato et al., 2013). Here, we extend these
previous efforts by validating a novel image reconstruction approach to
fNIRS data.

A central challenge when using fNIRS is that the sensors are placed
on the surface of the head, but the questions of interest are about
localized activity within the brain volume. Standard fNIRS analysis
approaches treat each channel as independent, and significant channel-
based effects are often discussed with reference to the 10–20 system of
electrode placement. This has several limitations. First, it is difficult to
precisely align an fNIRS probe across participants’ heads due to
variations in head size and shape (Tsuzuki and Dan, 2014). For
instance, many studies place the optical probes within a rigid body
that is then affixed to the head at a particular reference point in the 10–
20 system. Although this places the probe over the correct cortical
region, slight rotations of the rigid body on the head can create
variations in which cortical regions are measured across participants.
This challenge is exacerbated with infants, young children, and clinical
populations who have difficulty sitting still.

Second, by treating each fNIRS channel as independent, research-
ers fail to capitalize on cases where channels record from overlapping
regions of cortex. In such cases, weak effects that live at the intersection
of channels might not be detected in channel-based analysis. Third,
channel-based analyses make it difficult to compare results across
studies and to findings from fMRI studies. It would be ideal if we could,
for instance, determine whether an effect reported in an fNIRS study
was localized in the same region of cortex as a related effect measured
with fMRI. Finally, to date, analytic tools developed in the fNIRS
literature are often isolated from analytic tools developed in the fMRI
literature and vice versa.

One potential solution would be to transform channel-based time-
domain fNIRS signals into voxel-based fNIRS activation maps, similar
to those reported in fMRI studies. Perlman et al. (2015) used an image
reconstruction approach to study activation in response to a VWM task
in 3- to 7-year-olds that was based on work by Boas, Culver, and
colleagues (Fang and Boas, 2009; Perlman et al., 2015). Here, we build
on this and related work (Brigadoi et al., 2015) and ask whether this
image reconstruction approach identifies similar clusters of task-
related activation within the brain volume measured with simultaneous
fMRI.

In the sections that follow, we describe the image reconstruction
approach. The pipeline we developed builds on a set of methodological
tools that help with the design of fNIRS probe geometries (Wijeakumar

et al., 2015). Here, we extend these tools, adding a novel image
reconstruction approach to move fNIRS signals from channel-space
to voxel-space. We then attempt to validate this approach by examining
the correspondence between fMRI and image-based fNIRS in response
to a VWM task that we adapted from work by Todd and Marois (2004).
First, we examine correlations between HbO and HbR and BOLD
activation maps. In a second validation step, we look at whether
parametric effects measured with fMRI were also evident in the image-
based fNIRS results. An important neural signature that has emerged
from the fMRI VWM literature is the increase and gradual asymptote in
neural activation levels as the working memory load is increased. In the
current study, we will hone in on exemplar clusters that show an effect
of working memory load and demonstrate that both fNIRS and fMRI
show similar trends in activation levels.

2. Materials and methods

2.1. Subjects

Thirteen (6 Males; M age=25.7; SD=4.2) native English-speaking
participants completed the fMRI-fNIRS study. All of them were
students at the University of Iowa. All participants had normal or
corrected-to-normal vision and signed an informed consent form
approved by the Ethics Committee at the University of Iowa.

2.2. Stimuli and task design

We used a Change Detection task. The experimental paradigm was
created using E-prime version 2.0 and was run on an HP computer
(Windows 7).

Each trial began with a verbal load of two aurally presented letters;
see (Todd and Marois, 2004). At the end of each trial, participants were
asked to repeat the presented letters to eliminate the possibility of
verbal rehearsal of the colors of the stimuli. Following the presentation
of the letters, a Sample array of colored squares (24×24 pixels) was
presented for 500 ms (randomly sampled from CIE*Lab color-space at
least 60° apart). Squares were randomly spaced at least 30° apart along
an imaginary circle (100 pixels). The Sample array was followed by a
delay of 1200 ms. The delay was followed by the Test array for 1800
ms. The Test array was presented with the same number of colored
squares as the Sample array, but the Test array could either match the
colors of the Sample array (‘Same’ trials) or the color of a randomly-
selected square was shifted 36° in color space (‘Different’ trials).
Participants had to indicate with a button press if the Test array
matched the Sample array ( see Fig. 1).

Working memory load was manipulated such that two (Load 2),
four (Load 4) or six (Load 6) squares were presented during the Sample
and Test arrays. Participants completed five runs of 120 trials (3 runs

Sample Array 
(500 ms)

 Test Array 
(1800 ms)

 Delay 
(1200 ms)

 Jitter 
(1000, 2500 or 3000 ms)

Fig. 1. Change detection paradigm.
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at Load 4; 1 run each of Load 2, Load 6) in one of two orders (Load 2,
Load 4, Load 6, Load 4, Load 4 or Load 6, Load 4, Load 2, Load 4, Load
4). Three out of thirteen participants did not complete all three runs of
Load 4 due to the discomfort of lying in the scanner with the fNIRS
sensors attached.

2.3. fNIRS acquisition

A 24-channel TechEn CW6 (12 sources and 24 detectors) system
with wavelengths of 830 nm and 690 nm was used to collect fNIRS data
at 25 Hz simultaneously with fMRI data collection. Fiber optic cables
were used to deliver light to a customized cap designed for use within
the MRI scanner. The cap consisted of channels in 6 arrays covering the
left and right frontal, temporal, and parietal regions. Each array
consisted of two sources and four detectors. The arrays overlying the
frontal and parietal cortices had five channels each with 3 cm source-
detector (SD) separation and two channels with 1 cm SD separation.
The arrays overlying the temporal cortex consisted of four channels
with 3 cm SD separation and two channels with 1 cm SD (short source-
detector channels) separation. In total, the probe had 40 channels.
These arrays were placed on the head relative to the 10–20 system.
Note that only six out of the thirteen participants had usable data from
the short source-detector channels. Therefore, we did not include data
from the short source-detector channels for any of the participants in
our analyses. Consequently, we ended up with 28 channels per
participant (see Fig. 2a). Vitamin E capsules were placed on the
fNIRS probe so that the positions of the channels could be detected
on the structural scans.

2.4. fNIRS processing (Steps 1–2 in Fig. 3)

Fig. 3 shows a flowchart of the processing pipeline. The steps shown
in the flowchart are discussed in the following sections.

fNIRS data were preprocessed using HOMER2
(www.nmr.mgh.harvard.edu/PMI/resources/homer2). Raw data were
converted to optical density units. Targeted principal components
analysis (AMPThresh=0.5, STDthresh=50, tMask=1, and tMotion=1)

was applied to the data to identify and correct motion artifacts (Yücel
et al., 2014). The data were then screened for residual motion using
motion artifact correction (using the same parameters as above) and
those trials that did not meet the criteria were excluded from further
analysis. No trials were lost due to motion (there was little motion since
participants had to lie still inside the MRI head coil). Data were band-
pass filtered (0.016–0.5 Hz) to remove low frequency drifts and high
frequency noise. Data were then converted to HbO and HbR concen-
tration units using the modified Beer-Lambert Law.

Channel-based weighted block averages (used in the majority of
previous fNIRS studies) computed across all participants for the Hit
condition showed evidence for increasing HbO concentration with
increasing working memory load in some channels (see channels 3, 8,
9, 14, 15, 18, 19 and 20 in Supplementary Fig. 2). Channel-based
weighted block averages for HbR activation have been shown in
Supplemental Fig. 3. Critically, however, there is limited information
about the spatial distribution of these results. Further, in this state,
results cannot be directly compared to voxel-based results that fMRI
studies yield. To examine these issues, we need to translate these
channel-based results to voxel-space using image reconstruction
methods. Note that these conventional channel-based block averages
are for illustration purposes only; these averages were not used
below. Rather, the pipeline we developed uses a general linear
modeling approach that capitalizes on the event-related nature of
the experimental design.

To analyze the fNIRS data, a general linear model with 12
regressors was conducted on the HbO and HbR data. The 12 regressors
consisted of correct responses on different trials (Hits), correct
responses on same trials (CR), incorrect responses on different trials
(Miss), and incorrect responses on same trials (FA) for each of the Load
2, Load 4, and Load 6 runs (4 trial types×3 loads=12 regressors).
Regressors were created by convolving the onset of the Sample array
for each of the conditions with a canonical single parameter gamma
variate function. Consequently, we obtained a beta coefficient for each
condition, channel, chromophore, and participant.

Fig. 3 Weighted block average HbO signals for Hit trials for Loads 2
(shown in blue), 4 (shown in green) and 6 (shown in red) across the

Fig. 2. (a) Probe geometry covering the frontal, temporal and parietal cortices. (b) Left hemispheric view of the optodes projected onto a single subject's head (segmented atlas from
MRI scan). Red and blue dots represent sources and detectors and the green lines show respective channels. (c) 3D representation of the intersected fNIRS-fMRI mask computed across
participants.
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frontal (outlined in red), temporal (outlined in green) an and parietal
(outlined in blue) channels.

2.5. Monte Carlo simulations (Steps 3–7 in Fig. 3)

Each participant's structural scan was segmented using 3dSeg into
separate volumes for gray matter, white matter, cerebro-spinal fluid,
and scalp tissue. These tissue volumes were identified and assigned
unique values. These volumes were then converted to 3D mesh surfaces
and merged together to create a subject-specific head atlas using scripts
in the HOMER2 repository (Wijeakumar et al., 2015). We chose to use
subject-specific structural scans instead of a generic adult atlas follow-
ing findings from Cooper and colleagues (Cooper et al., 2012). They
reported that the Euclidean error in localization with reference to a
center of activation increased two-fold when an atlas was used instead
of a segmented atlas from the individual's MRI scan.

Slicer3D was used to visualize and then extract the scalp landmarks
and positions of sources and detectors from Vitamin E capsules placed
on the structural scans of the participants. AtlasViewerGUI (available
within HOMER2: www.nmr.mgh.harvard.edu/PMI/resources/
Homer2) was then used to project these points onto an each partici-
pant's head atlas using a relaxation algorithm. A single subject's
projected probe geometry is shown in Fig. 2b. The projected geometry
was used to run Monte Carlo simulations (with 100 million photons)
based upon a GPU-dependent Monte Carlo algorithm (Fang and Boas,
2009). The output of the Monte Carlo simulations yield a sensitivity
distribution that is representative of the sensitivity of each channel to
detecting changes in the cortical absorption of near infrared light.
Thus, we obtained sensitivity profiles for each of the 28 channels for
each participant.

The sensitivity profiles and the head volumes were converted to
nifti images. Subject-specific head volumes were skull-stripped and
transformed from the AtlasViewerGUI space to the native subject
space using an affine transform (BRAINSFit in Slicer 3D). This
transformation matrix was also applied to the sensitivity profiles to
move them back to the native subject space (BRAINSResample in
Slicer3D). The sensitivity profiles for each participant were summed
together to create a subject-specific mask that represented the spatial
distribution of cortical volume that fNIRS signals were most likely
recorded from. These subject-specific masks were thresholded to
include voxels with an optical density of greater than 0.0001, a robust
threshold value that is derived from our previous work (Wijeakumar
et al., 2015).

Next, the head volumes in native subject space were transformed
from native subject space to MNI space using an affine transform with
nine parameters (using 3dAllineate). These transformation matrices
were further used to transform the subject-specific masks to MNI
space. These subject-specific masks were summed together and masked
such that only voxels that contained a value greater than 7 were
retained. Thus, we created a group intersection mask across partici-
pants wherein at least seven out of thirteen participants contributed to
a voxel. A decimated and smoothed version of a single participant's
head volume and the group intersection mask (created using
ModelMaker in Slicer 3D) is shown in Fig. 2c.

2.6. Image reconstruction (Step 8–9 in Fig. 3)

The majority of fNIRS studies have utilized channel-based time-
domain analyses. Although informative, such approaches provide only
limited information about localization, typically with reference to the

Fig. 3. Flowchart of the processing pipeline.
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10–20 positions of channels on the head. This can be problematic,
because the positions of sources and detectors invariably differ across
participants, particularly when working with special populations such
as infants, young children, or clinical populations who have difficulty
sitting still. Moreover, channel-based analyses fail to capitalize on the
fact that nearby fNIRS channels often record overlapping signals; such
information is lost by treating each channel as independent. Finally,
the absence of good localization tools in fNIRS research limits
comparisons with the large body of fMRI research. Hence, the goal of
our study was to validate a new image reconstruction approach in a
cognitive task.

To generate functional images from the fNIRS data, the beta
coefficients obtained for each condition, channel, and participant (see
section 2.4) must be combined with the sensitivity profiles obtained
from the Monte Carlo simulations (see section 2.5) to create voxel-
based changes in HbO and HbR concentration. The relationship
between the hemodynamic response (estimated by the beta coefficients
from the GLM) in HbO/HbR concentration and that in delta-optical
density is given by:

β ppf d ε β ppf d ε β= . . . + . . .dOD
λ λ

HbO
λ

HbO
λ

HbR
λ

HbR (1)

where, d is the source-detector distance, ε is the extinction coefficient
for each wavelength (λ) and ppf is the partial pathlength factor (Li
et al., 2004).

Eq. (1) can be re-written to accommodate the forward model and
betas from each channel for each wavelength to estimate voxel-wise
changes in HbO and HbR concentrations,
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where, F is the channel-wise sensitivity volumes from the Monte Carlo
simulations. ΔHbOvox and ΔHbRvox are voxel-wise relative changes in
HbO and HbR concentrations – this is what we want to estimate in the
image reconstruction process. Note that β and F are obtained for each
channel and are represented as arrays within the matrix above.

We can re-write equation Eq. (2) as,

Y L X= . (3)
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Inverting L to solve for X results in an ill-conditioned and under-
determined solution that might be subject to rounding errors. An
alternative is to use a popular regularization method called Tikhonov
regularization (Tikhonov, 1963). In this case, the above ‘system’ can be
replaced by a regularized ‘system’. The solution is given by the Gauss-
Markov equation,

X L L λ I L Y= ( + . ) . )T T−1 (4)

where λ is a regularization parameter that determines the amount of
regularization and I is the identity operator.

The solution to (4) can be found by minimizing the cost function
(Calvetti et al., 2000),

cost X L X Y λ X Xmin = . − + .| − |o
2 2 (5)

where the size of the regularized solution is measured by the norm λ . |X
– X0|

2. X0 is a priori estimate of X, which is set to zero when no priori
information is available. Picking the appropriate regularization para-
meter is dependent on the trade-off between fitting Y and maintaining a
small residual (if too much regularization is applied) and eliminating the
contributions of data and rounding errors (if too little regularization is
applied). Hence, an L-curve is plotted between the norms of the solution
and the residual. The corner of this L-curve is identified and the
corresponding regularization parameter is used to estimate X.

Here X is determined for each chromophore and condition (12
conditions) separately. Once we solve (5), we have a voxel-wise
estimate of the concentration data. Thus, we have moved from our
best estimate of the channel-wise concentration data for each condition
(from the GLM) and combined this information with the sensitivity
profiles to create an estimate of the voxel-wise relative changes in
concentration for each condition, for each subject and, for each
chromophore. These maps were transformed to the MNI space by
using the transformation matrix (affine transformation with 9 para-
meters) generated from transforming the subject-specific head vo-
lumes. Finally, these voxel-wise relative changes in chromophore
concentration were multiplied by the group intersection mask and
moved forward to the group analyses.

2.7. fMRI acquisition and processing (Steps 10–12 in Fig. 3)

fMRI data were collected in a 3T Siemens TIM Trio scanner using a
12-channel head coil. Anatomical T1 weighted volumes were collected
using an MP-RAGE sequence. Functional BOLD imaging was acquired
using an axial 2D echo-planar gradient echo sequence with the
following parameters: TE=30 ms, TR=2000 ms, flip angle=70°,
FOV=240×240 mm, matrix=64×64, slice thickness/gap=4.0/1.0 mm,
and bandwidth=1920 Hz/pixel.

AFNI was used to perform standard pre-processing such as slice
timing correction, outlier removal, motion correction, and spatial
smoothing (Gaussian FWHM=5 mm). Nuisance regressors of motion
correction, baseline drift, and 12 standard model regressors (12
conditions – as specified in section 2.4) were used in a general linear
model (using 3dDeconvolve). Polynomials of the third order were used
as regressors to account for drift in the data and serve as a high pass
filter. Note that, BOLD data were analyzed using conventional
parameters from fMRI literature and not with parameters used for
the fNIRS analyses. The onset of the sample array for each condition
was convolved with a canonical single parameter gamma variate
function. This function was identical to that used in the GLM for the
fNIRS data. Betamaps (in percent BOLD signal) were obtained for each
model regressor and for each participant. An affine transformation was
applied to each individual's skull-stripped T1 scan to transform it to the
MNI space. This transformation matrix was used to transform the
betamaps to the MNI space. Finally, these betamaps were multiplied by
the group intersection mask (see step 8) and moved forward to the
group analyses.

2.8. Statistical analysis

2.8.1. Behavioral analysis
Only correct trials across Load (2, 4 and 6) and Trial type (Same

and Different) were analyzed using a two-factorial ANOVA in SPSS 21.

2.8.2. Correlations between BOLD and NIRS signals within the VWM
network (Step 13 in Fig. 3)

Previous validation studies have reported good spatial and temporal
correlations when comparing fNIRS and fMRI signals. In the current
study, we wanted to investigate whether the betamaps produced from
our image reconstruction methods were spatially correlated with the
BOLD betamaps.

We carried out Pearson's voxel-wise correlations between the BOLD
betamaps and relative changes in HbO and HbR concentration for each
of the 12 conditions separately. We thresholded each of our correlation
maps using a voxel-wise threshold of p < 0.05, α < 0.05 and a cluster
size of 28 voxels (obtained using 3dClustSim) based on the size of the
group intersection mask, size of the 3D grid of the image (91×109×91
vioxels), and the voxel size (2 mm) of the image. Further, voxels were
clustered together only if faces or edges touched. For specific exemplar
clusters, average R-values were calculated within each cluster for each
participant using 3dROIstats.
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To estimate the depth of the voxel with the highest correlation in
each cluster, the shortest Euclidean distance between the voxel with the
highest correlation and the surface of the brain was calculated.

2.8.3. Multi-factorial effects common to BOLD and NIRS (Step 14 in
Fig. 3)

Previous research with fMRI has reported key regions in the frontal,
parietal, and temporal cortices involved in processing changes in a
working memory task. Hence, in the current study, we examined
whether the same regions showing an effect in working memory
processing, for instance, with fMRI would also show comparable
parametric effects with fNIRS.

To achieve this, the BOLD betamaps were analyzed at the group
level using a three-factor ANOVA with Load (2,4,6), Trial type (Same,
Different), and Accuracy (Correct, Incorrect) as within-subjects factors.
Similarly, for fNIRS, the betamaps for the relative changes in HbO and
HbR concentration were analyzed at the group-level using two separate
3-factor ANOVAs (Load x Trial type x Accuracy), one for each
chromophore. The main effects and interactions from all three
ANOVAs (BOLD, HbO and HbR) were thresholded to correct for
familywise errors (voxel-wise threshold of p < 0.05, α < 0.05, and a
cluster size of 28 voxels). We then identified significant clusters where
both fMRI and fNIRS showed the same statistically significant main
effect or interaction. Further, the spatial maps for the main effect of
Load were compared between BOLD and fNIRS to highlight exemplary
effects.

3. Results

3.1. Behavioral results

Fig. 4 shows the accuracy rates in percentage across Load and Trial
types. Briefly, there were main effects of load (F(2,24)=57.40, p < 0.001)
and Trial type (F(1,12)=50.85, p < 0.001) and the interaction between
Load and Trial type (F(2,24)=57.40, p < 0.001) was also significant.
Post-hoc comparisons revealed that same trials had higher accuracy
rates than different trials (p < 0.001). Accuracy rates decreased with an
increase in Load (p < 0.05). Further comparisons of the interaction
between Trial type and Load revealed that accuracy significantly
decreased as a function of Load only for the different trials (p <
0.005). Further, only at Load 4 and 6, did same trials have significantly
higher accuracy rates than different trials (p < 0.001).

3.2. Correlations between BOLD and image-reconstructed fNIRS
signals

Fig. 5 shows a montage of the cortical regions where there was a
significant correlation between BOLD and HbO/HbR concentration
following familywise correction. As can be seen in the figure, the two
signals correlated significantly across many areas central to the VWM
network, including middle (MFG), inferior (IFG) and superior frontal
gyrus (SFG), superior (SPL) and inferior parietal lobule (IPL), superior
(STG) and middle temporal gyri (MTG), precuneus and cuneus. Note
that regions of overlap across HbO-BOLD and HbR-BOLD correla-
tions do not necessarily occur across the same conditions.

When we examined the nature of these correlations in detail, we
observed significant positive and negative correlations between HbO
and BOLD and HbR and BOLD signals. Positive HbO-BOLD and
positive HbR-BOLD correlations accounted for 22.9% and 29.7% of the
all the correlations, respectively. Interestingly, negative HbO-BOLD
and negative HbR-BOLD correlations accounted for 25.6% and 21.6%
of all the correlations, respectively. Note that a voxel could show
positive correlations between HbO and BOLD for a specific condition
and negative correlations for another condition. A complete break-
down of the correlation types across conditions is reported in
Supplemental Table T1.

When pooled across loads, Hit and CR conditions showed more
significant correlations between HbO and fMRI (Hits = 1824 voxels
and CR = 1243 voxels) than the FA and Miss conditions (see
Supplemental Table T1 for details). Further, we were particularly
interested in the Load 4 condition as previous research has suggested
that the capacity limit for visual working memory is around four items
(Luck and Vogel, 1997). Thus, to examine the nature of the correlations
in greater detail, we focused on the Hit4 and CR4 conditions.

Figs. 6 and 7 show positive correlations across voxels for HbO-
BOLD and HbR-BOLD correlations for the Hit4 and CR4 conditions,
respectively. These figures also show scatter plots of correlation values
averaged across voxels in clusters that met the family-wise correction
threshold (28 voxels). For the Hit4 condition, the magnitude of the
peak correlation values from each significant cluster for positive HbO-
BOLD and positive HbR-BOLD correlations ranged from 0.71 to 0.99.
For the CR4 condition, the peak correlation values from each sig-
nificant cluster for positive HbO-BOLD and positive HbR-BOLD
correlations ranged from 0.62 to 0.97. As is evident from the figures,
there were clusters with significant positive HbO-BOLD correlations in
the rSPL for both Hit4 and CR4 conditions. Similarly, there were
clusters with significant positive HbR-BOLD correlations in the rIFG
for both Hit4 and CR4 conditions (for a complete listing of clusters
with significant correlations, see Supplementary Tables T2–T5).

Previous studies have reported that the depth of voxels showing
correlations between BOLD and fNIRS measures were between 15–
20 mm (Cui et al., 2011; Schroeter et al., 2006). Thus, we estimated the
depth of the voxels within each cluster with the highest correlations
between HbO and BOLD and HbR and BOLD for Hit4 and CR4
conditions. The mean depth (from the surface of the brain) of the most
highly correlated voxels between fNIRS and BOLD was 5.6 ± 0.8 mm
(positive HbO-BOLD correlation depth=4 mm and positive HbR-BOLD
correlation depth=7.1 mm). Taken together with an average estimation
for scalp and skull thicknesses (11–13 mm), the depth of these
correlations from the surface of the scalp is between 15–20 mm, which
is in agreement with these previous studies (Cui et al., 2011; Schroeter
et al., 2006).

3.3. Overlapping multi-factorial VWM effects

The current validation study is embedded within a cognitive task
with parametric manipulations. Do fNIRS and fMRI detect the same
changes in activation levels as a function of these parametric manip-
ulations? To evaluate this question, we conducted three 3-factorFig. 4. Accuracy (%) plotted across same and different trials for Loads 2, 4 and 6.
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ANOVAs – one for BOLD, one for HbO, and one for HbR (see
Methods)–and examined the degree to which significant effects over-
lapped and yielded the same activation patterns across experimental
manipulations.

Fig. 8 shows a montage image of the overlapping and unique effects
from the significant ANOVA results following family-wise correction.
There is overlap between the fNIRS and BOLD effects across parts of
the fronto-parieto-temporal regions such as IPL, MFG, SFG and IFG.
Although there is overlap between the modalities, however, the fNIRS
effects are much more focal compared to the spatial distribution of the
BOLD effects. As we discuss below, this may reflect differences in the
signal-to-noise ratio of the two modalities. Note that overlap between
HbO, HbR and MRI accounted for only 15 voxels (summed across all
cortical regions) and this has not been shown in Fig. 8.

Within the regions of overlap, a central issue is whether the two
modalities are detecting the same parametric effect. Tables 1 and 2
show all clusters that had overlapping main effects and interaction
effects for HbO and BOLD and HbR and BOLD ANOVAs, respectively.
There was substantial overlap in effects across key parts of the visual
working memory network. This included large clusters with over-
lapping Load main effects in rIPL and rMFG for the comparison
between HbO and BOLD. There were also large clusters with over-
lapping Load x Trial x Accuracy effects in lSFG and lIFG, as well as a
large cluster with an overlapping Accuracy main effect in rIFG.

Fig. 9 shows the activation pattern in two rIPL clusters for
illustration showing an increase in HbO and BOLD as the working
memory load increased from 2 to 6 items (p < 0.05).

For the comparison between HbR and BOLD, we found large

clusters with overlapping Load main effects in right superior occipital
gyrus (rSOG) and right postcentral gyrus. There was also a large cluster
with an overlapping Load x Trial x Accuracy interaction in the left
angular gyrus (AG), and a large cluster with an overlapping Accuracy
main effect in lIFG. In Fig. 10, we observed an increase in BOLD and a
decrease in HbR activation in the rSOG cluster (Load Main effect) as
the working memory load increased from 2 to 6 showing (p < 0.05).
Albeit, in different cortical areas, HbR activation in rSOG shows an
opposite trend to that of HbO and BOLD activation in rIPL.

4. Discussion

The objective of the current study was to validate a novel
methodological pipeline to move fNIRS analyses from conventional
channel-based analyses on the surface of the head to voxel-based
analyses within the brain volume. There are several advantages of the
image reconstruction approach. First, this approach aligns the fNIRS
data across participants, factoring in differences in optode placement
due to experimenter errors and/or movement of the participant. The
latter is likely to be a key source of variation when dealing with infants,
young children, and clinical populations who have difficulty sitting still.
Second, the image reconstruction approach can capitalize on cases
where nearby fNIRS channels record from overlapping cortical areas,
potentially boosting the strength of effects that are weak and distrib-
uted across channels. Third, the image reconstruction approach allows
for direct comparisons with fMRI data. Finally, this approach facilitates
analysis in that fMRI analysis tools can be readily used with fNIRS
data. This makes it easy to port advanced analysis techniques from the

Fig. 5. Montage showing correlations between relative changes in HbO/HbR concentration and percent BOLD signal change. Note that the spatial distributions have been masked to
create binary images. The green color indicates clusters with significant HbO-MRI correlations, but not HbR-MRI correlations; orange indicates clusters with significant HbR-MRI
correlations, but not HbO-MRI correlations; red indicates clusters with significant correlations between both chromophores and MRI.
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fMRI literature to the fNIRS literature.
These advantages of the image reconstruction approach are evident

in Fig. 11. In this figure, we show surface projections of the sensitivity
volumes for a single fNIRS channel across the 13 participants. The
single channel's positions across the 13 participants have been shown
using the four 3D images (top left image shows this channel placement
on 4 participants and top right, bottom left and right show this channel
placement on 3 participants each). This particular channel showed
considerable variation in position on the head surface. The image
reflects the challenge of placing fNIRS optodes on the head relative to
the 10–20 system. Variation was likely introduced when we positioned
participants inside the scanner bore causing optodes to shift slightly as
participants laid down. Consequently, this channel was recording from
different parts of cortex across participants.

In stark contrast to this variable cloud on the brain surface, the
image at the center shows results within the brain volume underneath
the region where this fNIRS channel was placed. The cluster shows a
significant main effect of Load in the rIPL (obtained from Fig. 9 –HbO-
BOLD effect) from the image reconstruction approach. The fNIRS
cluster precisely overlaps with a localized main effect of Load from the
fMRI analysis. The fNIRS analysis was also straightforward to conduct
using an fMRI analyses toolbox such as AFNI.

In the sections that follow, we elaborate on our validation findings.
We focus first on the correlational results. Next, we evaluate the multi-
factorial effects, highlighting results showing the parametric manipula-
tion of the memory load.

4.1. Correlations between fNIRS and fMRI

Previous concurrent fNIRS and fMRI studies have established that
results from both modalities are well-correlated across sensory tasks
(Cui et al., 2011; Gagnon et al., 2012; Huppert et al., 2006, 2005;
Sassaroli et al., 2005; Sato et al., 2013; Schroeter et al., 2006;
Strangman et al., 2002; Wijeakumar et al., 2012a). However, there is
less work that has examined the correspondence between both
techniques in cognitive tasks (for exceptions, see Cui et al., 2011;
Sato et al., 2013).

In the current study, fNIRS measures were correlated with BOLD
measures in a number of cortical regions that spanned the frontal,
parietal, temporal, and occipital cortices. There were both positive and
negative correlations between HbO and HbR and BOLD signals.
Collectively, positive HbR-BOLD correlations were more frequent than
positive HbO-BOLD correlations. Interestingly, there is debate on the
exact role of HbR during experimental tasks, an issue which is spurred
on by studies showing strong correlations between HbR and BOLD
(Huppert et al., 2006, 2005; Kleinschmidt et al., 1996; MacIntosh
et al., 2003; Mehagnoul-Schipper et al., 2002; Murata and Sakatani,
2002; Sato et al., 2013; Siegel et al., 2003; Toronov et al., 2001). Other
studies, by contrast, have shown higher correlations between HbO and
BOLD (Cui et al., 2011; Heinzel et al., 2013; Hoshi and Tamura, 1993;
Strangman et al., 2002; Yamamoto and Kato, 2002), and a few studies
have reported significant correlations between total hemoglobin con-
centration and BOLD (e.g., Hess et al., 2000). These findings highlight
the need for clarity on precisely how HbO, HbR, and BOLD are related.

Fig. 6. Positive HbO-BOLD and HbR-BOLD correlations for the Hit4 condition. Clusters that reached significance (p < 0.05) are shown within contours. Transparency of clusters in the
image indicates significance (as represented by the x-axis of the color scale). Scatter plots for selected clusters are shown below the respective correlation image. Ravg (shown in the
correlation plots) was obtained for each participant (N=13) by averaging the r values across all voxels of a significant cluster.
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There is also a need for clarity on what negative correlations
between HbO and BOLD and HbR and BOLD represent. A few studies
have reported that signals obtained from fNIRS are sensitive to

microvasculature such as arterioles and venules instead of larger
vasculature such as arteries and veins as the light is unlikely to be
detected back at the scalp in the latter case (Boushel et al., 2001;

Fig. 7. Positive HbO-BOLD and HbR-BOLD correlations for the CR4 condition. Clusters that reached significance (p < 0.05) are shown within contours. Transparency of clusters in the
image indicates significance (as represented by the x-axis of the color scale). Scatter plots for selected clusters have been shown below the respective correlation image. Ravg (shown in
the correlation plots) represents correlation of data from 13 participants obtained from averaging r values across all voxels of a significant cluster.

Fig. 8. Montage showing overlap between ANOVA effects from HbO and HbR concentration and percent BOLD signal change. Note that the spatial distributions have been masked to
create binary images. The teal color indicates clusters with significant unique BOLD ANOVA effects; green color indicates clusters with significant unique HbO ANOVA effects; brown
color indicates clusters with significant unique HbR ANOVA effects; pink color indicates clusters with significant overlap between HbO and BOLD ANOVA effects and red color indicates
clusters with significant HbR-BOLD ANOVA effects. Note that overlap between HbO, HbR and MRI accounted for only 15 voxels (summed across all cortical regions) and not shown
in Fig. 8.
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Cannestra et al., 2001; Liu et al., 1995a, 1995b; Schroeter et al., 2006).
In On the other hand, fMRI is likely to be more sensitive to bigger
vessels. These anatomical differences taken within the context of a time
and space-sensitive neural process like VWM, could explain the
presence of negative correlations between modalities. Future validation
studies that use cognitive tasks could examine both spatial and
temporal aspects of these signals to better understand the relationship
between HbO, HbR, and BOLD.

How do previous reports of correlations between fNIRS and fMRI
compare with those reported in the current study? Cui et al. (2011)
projected a marker from each channel from the scalp to the brain and
correlated an average as well as voxel-wise BOLD signals from a 5mm
radius of the projected points with that specific channel's fNIRS signal
(Cui et al., 2011). They showed good spatial correspondence between
fMRI and fNIRS across the frontal and parietal cortices in response to
an n-back visual working memory task. They found that the highest
correlation between HbO and BOLD was 0.26 and the HbR and BOLD
was 0.23. An earlier study by Okamoto and colleagues observed almost
equal correlation values between HbO and BOLD and HbR and BOLD
during an apple-peeling exercise (Okamoto et al., 2004). Further, they
found that the highest correlations were observed in the middle frontal
and inferior parietal areas. Overall, these results are in agreement with
findings from the current study wherein the highest correlations were
observed in SPL and IFG. That said, we observe much higher
correlations between fNIRS and fMRI activation than shown in
previous studies.

An interesting observation from the correlation scatterplots was
that the variation in the fNIRS signal was greater for SPL than for IFG.

The frontal cortex is responsible for the maintenance of goals and
abstract representations of the task whereas parietal regions are
responsible for feature-processing and visual stimulus encoding
(D’Esposito and Postle, 2015). Given these functions, it is possible
that increased variability in SPL might be a reflection of inter-
individual differences in stimulus processing. Future work will need
to explore the extent to which variations in brain activation might
reflect inter-individual differences in performance.

In another study, Sato et al. used photon path distributions to
weight averaged BOLD signals from grey matter voxels and correlated
those with fNIRS signals in the channels that ‘supervised’ those voxels
(Sato et al., 2013). They conducted correlations between time-domain
signals and found that HbR was marginally more correlated with BOLD
than HbO. They reported that the middle of prefrontal cortex, around
the inferior parietal and superior temporal cortices showed a high
correlation between BOLD and fNIRS signals. In the current study, we
found that both positive HbO–BOLD and HbR-BOLD showed similar
ranges of correlations. Further, the number of correlated voxels for
HbR-BOLD was slightly higher than for HbO-BOLD.

Another interesting metric that has been reported in previous
studies is the depth at which these correlations have been observed.
Schroeter et al. (2006) found that the highest correlations between
fNIRS and fMRI signals in response to visual stimulation occurred
between 15–20 mm from surface of the scalp (Schroeter et al., 2006).
Cui et al. (2011) observed that peak correlations were observed at a
depth of 4 voxels, which translated to approximately 16 mm [as per the
voxel size they specified] (Cui et al., 2011). In the current study, voxels
with the highest correlations within each cluster were observed at a

Table 1
Regions commonly activated by the main effects and interaction effects of Load, Accuracy and Trial for HbO and BOLD ANOVAs. Note that, there were no common regions of overlap
for the Trial main effect and the Accuracy X Trial interaction.

Region Hemi Center of Mass MNI Coordinates (LPI orientation) Size (mm3)

x y z

Load Main effect
Inferior parietal lobule R 50.8 -50.2 42.9 160
Inferior parietal lobule R 50.3 -57 46.3 144
Middle frontal gyrus R 37.1 45.9 11.6 824
Middle frontal gyrus R 39.1 21.8 34.8 232
Middle frontal gyrus R 38.5 56 12.5 64
Middle frontal gyrus R 39.6 29.2 40 40
Middle frontal gyrus R 38 57 0 16
Middle frontal gyrus R 36 56 2 8
Middle frontal gyrus R 42 46 20 8
Middle frontal gyrus R 38 24 40 8

Load x Accuracy
Superior frontal gyrus L -22.3 40.6 33.7 56
Superior frontal gyrus L -24.7 44.7 38 24
Superior frontal gyrus L -21.3 45.3 40 24
Superior frontal gyrus L -18 44 36 8

Load x Trial
Postcentral gyrus R 52 -5.8 27.8 80

Load x Trial x Accuracy
Superior frontal gyrus L -14.9 54.3 27.4 224
Inferior frontal gyrus L -38.9 13.5 24.6 176
Inferior frontal gyrus R 46 30 26 8
Inferior frontal gyrus R 44 28 28 8

Accuracy Main effect
Middle frontal gyrus R 44 41 20 16
Middle frontal gyrus R 44 32 22 8
Inferior frontal gyrus R 46.7 30.4 19 448
Inferior frontal gyrus R 42 29 24 16
Inferior frontal gyrus R 40 32 14 8
Inferior frontal gyrus R 44 36 16 8
Inferior frontal gyrus R 40 26 24 8
Postcentral gyrus R 54 -3 24 16
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mean depth of 8.8 mm of the cortical surface. Taken together with
previously reported measures of scalp and skull thickness estimates of
about 11–13 mm (Oldendorf, 1969; Strangman et al., 2014), our
findings are in agreement with previous studies.

To summarize, both HbO and HbR were positively correlated with
BOLD in regions within the VWM network. These correlations were
much higher in magnitude but at a similar cortical depth as findings
reported in previous studies. This is an important finding given that
there have been relatively few validation studies using cognitive tasks
and no previous validation studies using the image reconstruction
approach described in the present report. Although promising, future

work will be needed to more understand the nature of the correlations
(positive and negative) observed across neuroimaging modalities.

4.2. Multi-factorial effects of VWM

In addition to voxel-wise correlations across modalities, we exam-
ined whether task-specific effects were also consistent in both the
fNIRS and fMRI data. To examine this question, we intersected effects
from BOLD, HbO, and HbR ANOVAs. We found overlapping effects
across parts of the VWM network as reported in previous fMRI studies
(Linden et al., 2003; Luck and Vogel, 2013; Ma et al., 2014; Pessoa

Table 2
Regions commonly activated by the main effects and interaction effects of Load, Accuracy and Trial for HbR and BOLD ANOVAs. Note that, there were no common regions of overlap
for Trial main effect and Accuracy x Trial interaction.

Region Hemi Center of Mass MNI Coordinates (LPI orientation) Size (mm3)

x y z

Load Main effect
Inferior parietal lobule R 50.8 -50.2 42.9 160
Inferior parietal lobule R 50.3 -57 46.3 144
Middle frontal gyrus R 37.1 45.9 11.6 824
Middle frontal gyrus R 39.1 21.8 34.8 232
Middle frontal gyrus R 38.5 56 12.5 64
Middle frontal gyrus R 39.6 29.2 40 40
Middle frontal gyrus R 38 57 0 16
Middle frontal gyrus R 36 56 2 8
Middle frontal gyrus R 42 46 20 8
Middle frontal gyrus R 38 24 40 8

Load x Accuracy
Superior frontal gyrus L -22.3 40.6 33.7 56
Superior frontal gyrus L -24.7 44.7 38 24
Superior frontal gyrus L -21.3 45.3 40 24
Superior frontal gyrus L -18 44 36 8

Load x Trial
Postcentral gyrus R 52 -5.8 27.8 80

Load×Trial×Accuracy
Superior frontal gyrus L -14.9 54.3 27.4 224
Inferior frontal gyrus L -38.9 13.5 24.6 176
Inferior frontal gyrus R 46 30 26 8
Inferior frontal gyrus R 44 28 28 8

Accuracy Main effect
Middle frontal gyrus R 44 41 20 16
Middle frontal gyrus R 44 32 22 8
Inferior frontal gyrus R 46.7 30.4 19 448
Inferior frontal gyrus R 42 29 24 16
Inferior frontal gyrus R 40 32 14 8
Inferior frontal gyrus R 44 36 16 8
Inferior frontal gyrus R 40 26 24 8
Postcentral gyrus R 54 -3 24 16

Fig. 9. Main effect of Load in two rIPL clusters. Bold lines indicate BOLD activation and dashed lines indicate HbO activation.
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et al., 2002; Postle, 2015; Todd and Marois, 2004; Todd et al., 2005).
These findings are also consistent with previous fNIRS studies that
have investigated VWM, albeit using different analytical methods (Aoki
et al., 2011; Cui et al., 2011; Cutini et al., 2011; McKendrick et al.,
2014; Ogawa et al., 2014; Sato et al., 2013; Tsujimoto et al., 2004).

We found fNIRS and fMRI effects within regions of the frontal
cortex that are important to VWM processing, including MFG. The
MFG has been implicated in a number of VWM studies as a key site for
the maintenance of rules, goals, and abstract representations that can
guide other parts of the VWM network (Aoki et al., 2011; Barbey et al.,
2013; Haxby et al., 2000; Munk et al., 2002; Pessoa and Ungerleider,
2004; Pessoa et al., 2002; Sala and Courtney, 2007; Sala et al., 2003;
Sala-Llonch et al., 2012; Smith and Jonides, 1998).

Further, we also found robust fNIRS and fMRI activation in the IPL
that increased with increasing working memory load. Our results are in
agreement with Todd and Marois who showed that the activation in the
inferior parietal sulcus increased with an increase in working memory
load (Todd and Marois, 2004). Furthermore, (Xu and Chun, 2006)
proposed that the inferior IPS is responsible for processing spatial

information using a spatial indexing mechanism whereas LOC and
superior IPS are important in processing object complexity (Xu and
Chun, 2006). Similarly, (Shafritz and Gore, 2002) showed that regions
engaged in spatial attention were activated when objects were pre-
sented simultaneously as opposed to presented sequentially suggesting
a link between spatial attention and feature binding (Shafritz and Gore,
2002). In our experiment, we only manipulated the color of the stimuli;
however, it is plausible that the parietal activation we observed reflects
a type of spatial indexing critical to feature binding.

Interestingly, the fNIRS ANOVA effects were focal in comparison to
the effects from the BOLD ANOVA. We applied a liberal threshold of p
< 0.05 to our fMRI data relative to previous studies in an effort to
maintain consistency across both approaches. However, it is possible
that the fMRI signal requires a more stringent threshold; much like
that demonstrated in previous fMRI studies to show more focal effects.
Clusters of activation after more stringent thresholding might be due to
the fMRI technique, capturing certain aspects of the task that fNIRS
could not. The current study is the first attempt at utilizing an ANOVA
approach based on voxel-based fNIRS measures to compare activation

Fig. 10. Main effect of Load in a rSOG cluster. Bold lines indicate BOLD activation and dashed lines indicate HbR activation.

Fig. 11. Variations of a channel across 13 subjects (shown in multiple colors across the different 3D images). Image at the center shows an axial slice for the Load effect (obtained from
Fig. 9 – HbO-BOLD effects) in rIPL.
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with BOLD spatial distributions. We believe that more studies will need
to be conducted to explore this novel finding.

Recent studies have discussed the importance of reporting both
HbO and HbR effects to clarify what fNIRS signals can tell us about
brain function (Tachtsidis and Scholkmann, 2016; Zhang et al., 2016).
These studies also advocate removing systemic effects from cerebral
and extra-cerebral signals, thereby leaving only task-relevant neural
activation. For instance, Zhang et al. found that after removing global
effects from the acquired signal, task-based HbO and HbR waveforms
were more temporally and spatially consistent with each other. Indeed,
this result was based on the assumption that true, task-related
activation requires consistency between HbO and HbR signals.
Critically, they applied their global signal correction on waveforms
obtained from a block design of a finger-thumb tapping task. It will be
important in future work to investigate whether these methods extend
to event-related designs in cognitive tasks. In this context, we note that
in the current study, we observed VWM effects amongst overlapping
and non-overlapping regions of HbO, HbR and BOLD activation.

In addition to the removal of global systemic effects, it may be
possible in the future to work to isolate HbO and HbR effects with a
different experimental design. In the present study, we used relatively
brief presentation times and short delays to mimic previous studies;
however, longer delays might help isolate distinctive HbO and HbR
patterns. For instance, several fMRI studies have explored neural
activation patterns across the encoding, maintenance, and comparison
phases by lengthening the duration of each phase (Linden et al., 2003;
Todd and Marois, 2005). Such tasks might be useful in teasing apart
the complicated dynamics between cerebral blood flow, cerebral blood
volume, and oxygen consumption.

In conclusion, findings from the present study successfully extend
previous work, validating a novel methodological pipeline to move
fNIRS analyses from the conventional channel-space to voxel-space
within the volume of the brain. Results show fNIRS and fMRI are
correlated across key VWM regions in the fronto-parietal network.
Further, both modalities show spatial overlap in those clusters that are
activated in response to parametric manipulations of the task including
increasing working memory load. Most critically, we have demon-
strated that the image-based fNIRS approach can effectively translate
fNIRS signals into voxel space to enable direct comparison with fMRI
results.
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